14 hasil
Prostate cancer (PCA) is the second most malignancy in American men. Advanced stage PCA cells possess unlimited replication potential as well as resistance to apoptosis. Therefore, targeting survival mechanisms and activating apoptotic machinery in PCA cells using nontoxic phytochemicals is
Silymarin and, one of its constituents, silibinin exert strong efficacy against prostate cancer (PCA); however, anticancer efficacy and associated mechanisms of other components of silymarin, which is a mixture of flavonolignans, are largely unknown. Here we have assessed the anticancer efficacy of
The role of neo-angiogenesis in prostate cancer (PCA) growth and metastasis is well established, but the development of effective and non-toxic pharmacological inhibitors of angiogenesis remains an unaccomplished goal. In this regard, targeting aberrant angiogenesis through non-toxic phytochemicals
Prostate cancer (PCa) is the leading cause of cancer-related deaths in men; urgent measures are warranted to lower this deadly malignancy. Silymarin is a known cancer chemopreventive agent, but the relative anticancer efficacy of its constituents is still unknown. Here, we compared the efficacy of 7
Extracts from the seeds of milk thistle, Silybum marianum, are known commonly as silibinin and silymarin and possess anticancer actions on human prostate carcinoma in vitro and in vivo. Seven distinct flavonolignan compounds and a flavonoid have been isolated from commercial silymarin extracts. Most
Extracts of milk thistle ( Silybum marianum, Asteraceae), termed "silymarin," are used worldwide, primarily for hepatoprotective applications and recently for prostate cancer chemoprevention. Silymarin is a mixture of at least eight compounds, and four major constituents are a group of structurally
Here, we assessed and compared the anticancer efficacy and associated mechanisms of silymarin and silibinin in human prostate cancer (PCA) PC3 cells; silymarin is comprised of silibinin and its other stereoisomers, including isosilybin A, isosilybin B, silydianin, silychristin and isosilychristin.
OBJECTIVE
Chronic hepatitis C is a serious global medical problem necessitating effective treatment. Because standard of care with pegylated interferon plus ribavirin therapy is costly, has significant side effects, and fails to cure about half of all infections, many patients seek complementary and
The gram-scale isolation of the major flavonolignan diastereoisomers from milk thistle ( Silybum marianum) extract provided an entree into the isolation of two related analogues that are present in extremely minute quantities. The isolation and structure elucidation of these two new compounds, which
In this paper, a new ultra-high performance liquid chromatography (UHPLC) method using a core-shell column with a pentafluorophenyl stationary phase for separation of seven active compounds of a Silybum marianum extract was developed and validated. Silymarin, an extract of Silybum marianum, is known
Protein tyrosine phosphatase 1B (PTP1B) is an attractive molecular target for anti-diabetes, anti-obesity, and anti-cancer drug development. From the seeds of Silybum marianum, nine flavonolignans, namely, silybins A, B (1, 2), isosilybins A, B (3, 4), silychristins A, B (5, 6), isosilychristin A
Silymarin, an extract of crushed achenes of the milk thistle plant Silybum marianum is a multi-constituent mixture, 70-80% of which consists of a complex assortment containing the flavonolignans silybin A and B, isosilybin A and B, silydianin, and silychristin, and the flavonoid taxifolin. To date,
Milk thistle (Silybum marianum) is a popular herbal product used for hepatoprotection and chemoprevention. Two commercially available formulations are the crude extract, silymarin, and the semipurified product, silibinin. Silymarin consists of at least seven flavonolignans, of which the most
Cold-pressed milk thistle seed flour was extracted with 50% acetone and evaluated for its phytochemical composition, and gut microbiota modulating, free radical scavenging, anti-inflammatory and anti-proliferative capacities. UHPLC-MS analysis detected fifteen compounds in the milk thistle seed