Halaman 1 dari 84 hasil
In male Wistar rats the influences of age and experimental obesity on the activity of malic enzyme (EC 1.1.1.40) in different organs were studied. Obesity was induced in newborn rats by injection of Na(+)-L-glutamate (2 mg/g b.w. daily) subcutaneously in the first 5 days. The enzyme activity was
Responses of the hepatic lipogenic enzymes, glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME) to starvation refeeding and diet shifting were determined in lean and obese female Zucker rats. Rats were either fed nonpurified diet, starved 48 hr,
1. Groups of lean, obese, and obese-non-insulin-dependent diabetic LA/N-cp and SHR/N-cp rats were administered the a-glucosidase inhibitor Miglitol (150 mg/kg diet, ad libitum) from 8 until 15 weeks of age. 2. Phenotype effects (obese greater than lean) were present for weight gain, adiposity, serum
The activities of enzymes of the glycolytic route, the pentose phosphate pathway and NADPH-linked enzymes have been measured in the kidneys of genetically obese (ob/ob) mice and their lean litter mates. The renal content of glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), fructose
Fatty liver is associated with obesity and breast cancer. We used an obese rat model of mammary cancer to examine whether hepatosteatosis is modifiable by diet and associated with altered expression of hepatic lipogenic enzyme genes, thyroid hormone system genes and cholesterol metabolism-related
Factors associated with the development of obesity were compared among obese (fa/fa), heterozygous (Fa/fa) lean and homozygous (Fa/Fa) lean Zucker rats at 17 d of age. Inguinal pad weight, pad-to-body weight ratio and fat cell size were highest in obese pups (fa/fa > Fa/fa > Fa/Fa). Hepatic
A catabolic and hypolipemic effect of glucagon has been described in normal animals. We therefore studied the role of glucagon in genetically obese, hyperlipemic rats. Twelve genetically obese hyperlipemic LA/N-cp/cp (corpulent) rats and 12 lean littermates were fed either 54% starch or 54% sucrose
A study of adipose cell metabolism was made at ages 5, 7, 10, and 14 wk of age in genetically obese Zucker rats. Adipose samples were surgically removed and used for in vitro adipose cell incubations and for characterization of enzyme patterns. Lipogenic capacity from glucose and enzymes normally
Obese (fa/fa) rats (30 days old) exhibited a 50% increase in the weight of interscapular brown adipose tissue compared with their lean (Fa/fa) littermates. The tissue weight increase was accounted for by an increased fat content. Lipogenesis in vivo, as assessed by the incorporation of 3H from 3H2O
The efficacy of reverse-electron-transport therapy of obesity should be promoted by agents which up-regulate hepatocyte enzymes that are potentially rate-limiting for mitochondrial fatty acid oxidation and electron shuttles. Peroxisome proliferator drugs, including the fibrates used to treat
The development of obesity, hyperinsulinemia and six hepatic lipogenic enzymes in Avy/a mice were compared to that in a/a mice. Correlation between body weight, liver weight, plasma insulin concentration and activities of hepatic enzymes was analyzed. In the Avy/a mice, body weight, liver weight and
Twenty-four male (12 obese and 12 lean) and 21 female (11 obese and 10 lean) SHR/N-cp rats were fed a diet containing either 54% sucrose or starch for periods of 3-4 months. Rats were killed after a 14-16 h fast and liver enzyme activities were determined in both sex groups. Liver
The genetically obese Zucker rat displays excessive fat storage capacity which is due to a tissue-specific increase in the activities of a number of lipid storage-related enzymes in adipose tissue. The aim of this study was to investigate the molecular mechanism responsible for this phenomenon. Lean
Inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase have been approved for treatment of hypercholesterolemia in humans. This class of therapeutic agents, in addition to lowering plasma cholesterol, reduces plasma triglyceride levels. We have investigated the mechanism of
Genetically obese (ob/ob) mice display a variety of metabolic differences from lean litter mates. In the obese state, fatty acid desaturation-elongation in brown adipose tissue mitochondria is apparently altered, resulting in differences in membrane fatty acid composition. This change in membrane