Halaman 1 dari 26 hasil
Centaurea maculosa Lam. is a noxious weed in western North America that produces a phytotoxin, (+/-)-catechin, which is thought to contribute to its invasiveness. Areas invaded by C. maculosa often result in monocultures of the weed, however; in some areas, North American natives stand their ground
The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill
Botrytis cinerea and Sclerotinia sclerotiorum secrete oxalic acid as a pathogenicity factor with a broad action. Consequently, it should be possible to interfere with the infection process by degrading oxalic acid during the interaction of these pathogens with their hosts. We have evaluated the
In humans oxalate is end product of protein metabolism, with no enzyme present to act on it. In conditions of its enhanced endogenous synthesis or increased absorption from the diet, oxalate accumulation leads to hyperoxaluria which can further lead to a number of pathological conditions including
Oxalic acid is a virulence factor of several phytopathogenic fungi, including Sclerotinia sclerotiorum (Lib.) de Bary, but the detailed mechanisms by which oxalic acid affects host cells and tissues are not understood. We tested the hypothesis that oxalate induces foliar wilting during fungal
Wheat germin is a protein expressed during germination which possesses an oxalate oxidase activity. Germin-type oxalate oxidases have been extensively studied in monocotyledons (wheat and barley) where they are thought to have important functions for development, stress response and defence against
Oxalate is produced by several catabolic pathways in plants. The best characterized pathway for subsequent oxalate degradation is via oxalate oxidase, but some species, such as Arabidopsis thaliana, have no oxalate oxidase activity. Previously, an alternative pathway was proposed in which oxalyl-CoA
Many plants accumulate crystals of calcium oxalate. Just how these crystals form remains unknown. To gain insight into the mechanisms regulating calcium oxalate crystal formation, a crystal engineering approach was initiated utilizing the non-crystal-accumulating plant, Arabidopsis. The success of
A T-DNA knockout of the Arabidopsis homologue of the tomato disease resistance gene Asc was obtained. The asc gene renders plants sensitive to programmed cell death (PCD) triggered by the fungal AAL toxin. To obtain more insights into the nature of AAL-toxin-induced cell death and to identify genes
Adhesion of calcium oxalate (CaOx) crystals to kidney cells is a key event in kidney stones associated with marked hyperoxaluria. As the propensity of stone recurrence and persistent side effects are not altered by surgical techniques available, phytotherapeutic agents could be useful as an adjuvant
Plastidic pyruvate kinase (PK(p)) from Brassica napus suspension cells was purified 431-fold to a final specific activity of 28 micromol phosphoenolpyruvate (PEP) utilized/min/mg protein. SDS-PAGE, immunoblot and gel filtration analyses indicated that this PK(p) exists as a 380-kDa heterohexamer
A gene cassette, p35S-CNO, was designed to express three gene products driven by a single constitutive CaMV 35S promoter. The individual coding regions were linked in frame to produce a single polyprotein, using spacer sequences encoding a specific heptapeptide cleavage recognition site (ENLYFQS)
Oxalic acid is thought to be a key factor of the early pathogenicity stage in a wide range of necrotrophic fungi. Studies were conducted to determine whether oxalate could induce programmed cell death (PCD) in Arabidopsis thaliana suspension cells and to detail the transduction of the signalling
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al