Halaman 1 dari 90 hasil
BACKGROUND
Saffron, which is made up of the dried stigmas of Crocus sativus L., has been successfully cultivated in China since 1970s and Zhejiang province is now the largest producing area in China, but the contents of crocetin esters and picrocrocin in saffron from Zhejiang province has not been
Crocins and picrocrocin are glycosylated apocarotenoids responsible, respectively, for the color and the unique taste of the saffron spice, known as red gold due to its high price. Several studies have also shown the health-promoting properties of these compounds. However, their high costs hamper
The kinetics of picrocrocin degradation in aqueous extracts of saffron upon thermal treatment from 5 to 70 °C have been studied, together with the degradation of purified picrocrocin in water at 100 °C. The best fits to experimental data were found for a second-order kinetics model. Picrocrocin
The aim of this work was the development of multivariate models able to determine the content of the main crocetin esters and picrocrocin from spectrophotometric data that could be used for routine quality control of saffron. These compounds were determined with HPLC in Spanish saffron, and their
High-performance liquid chromatography with photodiode-array detection was used to separate picrocrocin (bitter-tasting component, glucoside of safranal), cis/trans-crocins (carotenoids, glucosyl esters of crocetin) and safranal (flavour, monoterpene aldehyde) of saffron. All components of pure red
Saffron (Crocus sativus L.) shows different biological properties, some of which relate to its special components including safranal (deglycosylated picrocrocin). In our previous study on the mechanism of saffron functions, interaction of saffron carotenoids with DNA and oligonucleotides was
Crocetin esters present in saffron (Crocus sativus L.) stigmas and in Gardenia jasminoides Ellis fruit are the compounds responsible for their color. Of the fifteen crocetin esters identified in this study, five new compounds were tentatively identified: trans and cis isomers of crocetin
The cellular transport and bioactivity of the second major saffron apocarotenoid, picrocrocin, was examined in parallel to that of the major group, crocetin sugar esters, in aqueous extracts. The transport of pure picrocrocin was investigated in comparison to that of other saffron apocarotenoids,
This study is part of a wider project on the bitter taste of saffron and its preparations. A deeper knowledge on the taste perception of picrocrocin is necessary in order to develop products that satisfy consumer senses and provide them with adequate amounts of saffron major constituents, also
In this paper, 345 saffron samples were analyzed from different countries to study their picrocrocin content using different analytical techniques. The E1cm 1% of 257 nm results from all samples are inflated in comparison by the high-performance liquid chromatography (HPLC) data, because of the
A chromatographic method was developed and fully validated for the determination of the major saffron constituents, i.e., picrocrocin and five major crocins. Dried samples (styles of Crocus sativus and other Crocus taxa) were extracted with MeOH : water (1 : 1, v/v), and chromatographic separation
BACKGROUND
The expensive spice saffron originating from the stigmas of Crocus sativus L. and also applied in traditional Chinese medicine (TCM) constitutes a complex mixture of glycoconjugates varying not only in the aglycon structure, but also in glycosylation pattern. Therefore, various tandem
This study demonstrates a simple method for one-step isolation of the main secondary metabolites of a hydroalcoholic extract of Crocus sativus stigmas (saffron) using step-gradient centrifugal partition chromatography. The analysis was performed in dual and elution-extrusion mode, using five
Saffron, a spice derived from the dried red stigmas of Crocus sativus, is one of the oldest natural food additives. The flowers have long red stigmas, which store significant quantities of the glycosylated apocarotenoids crocins and picrocrocin. The apocarotenoid biosynthetic pathway in saffron
Extracts of saffron (Crocus sativus L.) have been reported to inhibit cell growth of human tumor cells. In order to study the cytotoxic effect of the characteristic compounds of saffron spice, we have isolated crocin, crocetin, picrocrocin and safranal. Doses inducing 50% cell growth inhibition