Halaman 1 dari 305 hasil
OBJECTIVE
Alterations in the expression of antioxidant enzymes are associated with changes in cancer cell sensitivity to chemotherapeutic drugs (menadione and β-lapachone). Mechanisms of acquisition of resistance to pro-oxidant drugs were investigated using a model of oxidative stress-resistant
Estrogen exposure is a risk factor for breast cancer, and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the beta-naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and
HER2 overexpression is associated with aggressive breast cancer with high recurrence rate and poor patient prognosis. Treatment of HER2 overexpressing patients with the HER2 targeting therapy trastuzumab results in acquired resistance within a year. The HER2/EGFR dual kinase inhibitor lapatinib was
A series of novel quinones was synthesized by reacting tetrabromo-p-benzoquinone with amino oligo(ethylene glycol) dendrons of generation numbers g = 0-2. According to the performed shake-flask experiments, their aqueous solubility (S = 18 mg l-1-1.6 g ml-1) and partition coefficients (log Poct/wat
The o-quinone forms of 2,3- and 3,4-catechol estrogens have been implicated in the carcinogenicity of these hormones. The concomitant production of reactive oxygen species during reduction of the o-quinone estrogens has been inferred to play a mechanistic role in their mutagenic potential.
Cumulative estrogen concentration is an important determinant of the risk of developing breast cancer. Estrogen carcinogenesis is attributed to the combination of receptor-driven mitogenesis and DNA damage induced by quinonoid metabolites of estrogen. The present study was focused on developing an
Both 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q) are reactive metabolites of estrogen. Elevation of E2-3,4-Q to E2-2,3-Q ratio is thought to be an important indicator of estrogen-induced carcinogenesis. Our current study compared the cumulative body burden of these
Both 17β-estradiol-2,3-quinone (E₂-2,3-Q) and 17β-estradiol-3,4-quinone (E₂-3,4-Q) are reactive metabolites of estrogen that are thought to be responsible for the estrogen-induced genotoxicity. The aim of this study was to establish a methodology to analyze estrogen quinone-derived protein adducts
Carbon-11-labeled casimiroin analogues were first designed and synthesized as new potential PET agents for imaging of quinone reductase (QR) 2 and aromatase expression in breast cancer. [(11)C]casimiroin (6-[(11)C]methoxy-9-methyl-[1,3]dioxolo[4,5-h]quinolin-8(9H)-one, [(11)C]11) and its
Hormone-dependent breast cancers that overexpress the ligand-binding nuclear transcription factor, estrogen receptor (ER), represent the most common form of breast epithelial malignancy. Exposure of breast epithelial cells to a redox-cycling and arylating quinone induces mitogen-activated protein
Antiestrogens have found widespread use in the treatment of breast cancer (reviewed in ref. 1). There is also interest in the use of tamoxifen as a preventive agent for breast cancer. However, the mechanism for the antitumor effects of antiestrogens is relatively unknown. For the most part it is
BACKGROUND
Tocotrienols, a subgroup of the vitamin E family, have demonstrated antioxidant and anticancer properties. Differential growth responses among different types of tocotrienols have been observed in breast cancer cells; however, specific bioactivity of each individual tocotrienol remains to
Thymoquinone (TQ), a bioactive component of black caraway seed (Nigella sativa) oil, is reported to have antineoplastic properties. In this study we investigated the effect of TQ on a panel of human breast cancer cell lines. Cell viability assays showed that TQ killed T-47D, MDA-MB-231, and
Triple-negative breast cancer (TNBC) represents a subtype of breast cancer characterized by high aggressiveness. There is no current targeted therapy for these patients whose prognosis, as a group, is very poor. Here, we report the synthesis and evaluation of a potent antitumor agent in vivo for
Autophagy is a cellular process that disrupts and uses unnecessary or malfunctioning components for cellular homeostasis. Evidence has shown a role for autophagy in tumor cell survival, but the molecular determinants that define sensitivity against autophagic regulation in cancers are not clear.