13 hasil
SsHKT1;1, a HKT1 homologue, was isolated from the C3 halophyte Suaeda salsa L. and its ion transport properties were investigated in heterologous systems. The expression of SsHKT1;1 suppressed a K+ transport-defective phenotype of the yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+
The distribution of sodium, potassium and glycinebetaine in shoot tissues of salt-treated Suaeda maritima was examined by semi-micro techniques after extraction into toluene-water. Much higher K/Na ratios were observed in the apical regions and in axillary buds than in more mature, fully vacuolated
An amino acid-incorporating microsomal fraction has been isolated from the leaves of the halophyte Suaeda maritima and the characteristics of the incorporation described. There were no differences in the properties of the microsomes isolated from plants grown in saline and non-saline conditions. The
Soil microorganisms play a key role in regulating the biogeochemical cycles of ecosystems. However, studies that quantitatively examine bacterial metabolic groups to predict the environmental and biological impacts are limited. In this research, we employed 16S rRNA gene sequencing on an Illumina
Potassium is an essential element for plant, and high-affinity K+ uptake system plays a crucial role in potassium absorption and transportation. Here we report the isolation and characterization of a HKT1 homolog from C3 halophyte Suaeda salsa (L.) (SsHKT1), particularly under low K+ treatment. The
Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species
The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In the present study, S. salsa seedlings were treated with 30‰ salinity and then leaves and roots were subjected to
Salinity is a critical abiotic stress, which significantly impacts the agricultural yield worldwide. Identification of the molecular mechanisms underlying the salt tolerance in euhalophyte Suaeda salsa is conducive to the development of salt-resistant crops. In the present study, high-throughput RNA
Nutrient elements and salinity in soil covered by different vegetations including Phragmites australis (Clay.) Trin., Typha orientalis Presl., Puccinellia distans Parl, and Suaeda salsa in Shuangtaizi estuarine wetlands were investigated to study their distribution characteristics and to reveal the
Soil enzymes play key roles in the construction and succession of coastal wetland communities, while the driving mechanism of their activities under water and salt stress conditions is still unclear. The activities and distributions of sucrase, phosphatase, catalase, and urease in the rhizosphere
Addition of inorganic nitrogen, phosphorus and potassium in a factorial design in two ungrazed Wadden-Sea salt marshes at low and high elevations showed that nitrogen was the limiting nutrient. No effects of nutrient addition were detected in the 1st year, probably due to a considerable rainfall
Microbial communities in intertidal coastal soils respond to a variety of environmental factors related to resources availability, habitat characteristics, and vegetation. These intertidal soils of India are dominated with Salicornia brachiata, Aeluropus lagopoides, and Suaeda maritima halophytes,
Ion concentration and saturation water content were measured in various aged leaves of halophytes growing in saline soils east of lake Neusiedlersee (Austria).All species investigated showed a substantial sodium accumulation within the maturing organs accompanied by a considerable potassium decline.