6 hasil
The GST (glutathione S-transferase) and GST+CAT1 (catalase 1) of Suaeda salsa were introduced into a low temperature-sensitive rice cultivar (Oryza sativa cv. Zhonghua No.11) by Agrobacterium tumefaciens-mediated transformation under the control of cauliflower mosaic virus (CaMV) 35S promoter, and
Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses.
The long term (30 days) toxicological effects of environmentally relevant concentrations of Pb2+ (20μg/L) and Zn2+ (100μg/L) were characterized in Suaeda salsa using proteomics techniques. The responsive proteins were related to metabolism (Krebs cycle and Calvin cycle), protein biosynthesis, stress
The Suaeda salsa glutathione s-transferase gene (GST) was inserted downstream of the 35S promoter in the plant expression vector pROK II and then was introduced into Arabidopsis thaliana by Agrobacterium tumefaciens through floral dip method. Transformants were selected for their ability to grow on
The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In the present study, S. salsa seedlings were treated with 30‰ salinity and then leaves and roots were subjected to
Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with