11 hasil
Suaeda maritima is a halophyte commonly found on coastal wetlands in the intertidal zone. Due to its habitat S. maritima has evolved tolerance to high salt concentrations and hypoxic conditions in the soil caused by periodic flooding. In the present work, the adaptive mechanisms of S. maritima to
The growth and tissue water, K(+), Na(+), Cl(-), proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly
Nickel and copper, as high toxic heavy metals (HMs), are the most serious contaminants in Jinchuan mining area, China. In this paper, the influence of combined HMs stress on the growth of widespread plant-S. salsa has been studied. The stress gradient of combined Ni-Cu was set based on the local
Dehydration-responsive element-binding (DREB) transcription factor (TF) plays a key role for abiotic stress tolerance in plants. In this study, a novel cDNA encoding DREB transcription factor, designated SsDREB, was isolated from succulent halophyte Suaeda salsa. This protein was classified in the
Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species
Glycine betaine is an important quaternary ammonium compound that is produced in response to several abiotic stresses in many organisms. The synthesis of glycine betaine requires the catalysis of betaine aldehyde dehydrogenase (BADH), which can convert betaine aldehyde into glycine betaine in
Distichlis spicata and Suaeda aegyptiaca are two potential halophytic plant species for bioremediation of salt degraded soils, and development of saline agriculture. The physiological responses of the species to different levels of salinity (EC 0, 12, 24, 36, and 48 dS/m) in a controlled environment
The present investigation was aimed to scrutinize the salt tolerance potential of plant-growth-promoting rhizobacteria (PGPR) isolated from rhizospheric soil of selected halophytes (Atriplex leucoclada, Haloxylon salicornicum, Lespedeza bicolor, Suaeda fruticosa, and Salicornica virginica) collected
The SaCLCa1 gene, a putative orthologue of AtCLCa, the Arabidopsis thaliana gene encoding a NO3-/Hp>+p> antiporter, was cloned from the halophyte Suaeda altissima. It belonged to the CLC family, comprising anionic channels and anion/Hp>+p> antiporters. SaCLCa1 ion
NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that
Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with