Halaman 1 dari 119 hasil
A cDNA clone for a cytosolic Cu/Zn superoxide dismutase (Cu/ZnSOD) was isolated and characterized from red pepper (Capsicum annuum L.). The clone consisted of 735 bp containing one open reading frame (ORF) of 459 bp, 46 bp of 5'- and 230 bp of 3'-untranslated region. The nucleotide sequence of the
A cDNA clone for a mitochondrial manganese superoxide dismutase (MnSOD) was isolated and characterized from red pepper (Capsicum annuum L.). The clone consisted of 941 bp containing one open reading frame (ORF) of 687 bp, 34 bp/220 bp of 5'/3'-untranslated region. Amino acid sequence of the ORF
Chloroplasts of Nicotiana tabacum have two superoxide dismutases: a Fe- and a CuZn-containing enzyme, encoded by the nuclear genes sodB and sodCp, respectively. As a first step in studying the physiological function of these two enzymes, we compared the expression of sodB and sodCp in different
Transgenic tobacco with enhanced cytosolic activities of glutathione reductase and superoxide dismutase were generated by cross-fertilization. Leaves of the hybrids exhibited further increased tolerance to a O2-.-generating herbicide paraquat than those of their parents. This result indicates the
We used a series of normal and Agrobacterium-transformed, bacteria-free tobacco tissue cultures which differ in their levels of histodifferentiation to test the relationship of superoxide dismutase, peroxidase, and catalase to oncogenic transformation and differentiation. When compared with normal
Iron superoxide dismutases (FeSODs) play an important role in preventing the oxidative damage associated with photosynthesis. To investigate the mechanisms of FeSOD in protection against photooxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with severely decreased FeSOD by
In eukaryotes, manganese superoxide dismutase is a nuclear-encoded protein that scavenges superoxide radicals in the mitochondrial matrix. We have isolated two manganese superoxide dismutase genes from Nicotiana plumbaginifolia L. and fused the 5' upstream regulatory region of these genes to the
Transgenic tobacco (Nicotiana tabacum cultivar W38) plants that overproduce petunia chloroplastic Cu/Zn superoxide dismutase were exposed to ozone dosages that injure control tobacco plants. Based on foliar injury ratings, there was no consistent protection provided to the transgenic plants. These
A chimeric gene consisting of the coding sequence for chloroplastic Fe superoxide dismutase (FeSOD) from Arabidopsis thaliana, coupled to the chloroplast targeting sequence from the pea ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, was expressed in Nicotiana tabacum cv Petit Havana
Activated oxygen or oxygen free radicals have been implicated in a number of physiological disorders in plants including freezing injury. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide into O2 and H2O2 and thereby reduces the titer of activated oxygen molecules in the cell. To
The isoenzyme I of cytosolic Cu,Zn-superoxide dismutase (SOD) from Nicotiana plumbaginifolia (tobacco) leaves has been purified to apparent homogeneity. The relative molecular mass of the native isoenzyme, determined by gel filtration chromatography, is about 33.2 kDa. SDS-polyacrylamide gel
Superoxide dismutases (SODs) are metalloproteins that catalyse the dismutation of superoxide radicals to oxygen and hydrogen peroxide. The enzyme has been found in all aerobic organisms examined, where it plays a major role in the defence against toxic reduced oxygen species which are generated in
Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS)
Superoxide dismutases (SODs; superoxide: superoxide oxidoreductase, EC 1.15.1.1) play a key role in protection against oxygen radicals, and SOD gene expression is highly induced during environmental stress. To determine the conditions of SOD induction, the promoter of the cytosolic copper/zinc SOD
In the plant Nicotiana plumbaginifolia, manganese superoxide dismutase (MnSOD) is synthesized in the cytoplasm as a preprotein and is subsequently translocated to the mitochondrial matrix with corresponding cleavage of an NH2-terminal leader sequence. To determine whether the plant enzyme could