Halaman 1 dari 32 hasil
Five terpenoids (1-5), including three new ent-kaurane diterpenoids (1-3), one new ent-rosane type diterpenoid (4) and one known triterpenoid (5), were isolated from stigma maydis (Zea mays L.). The structures of the compounds were elucidated by comprehensive spectroscopic analyses. The relative
Green leaf volatiles (GLV), a series of saturated and monounsaturated six-carbon aldehydes, alcohols, and esters are emitted by plants upon mechanical damage. Evidence is increasing that intact plants respond to GLV by activating their own defense mechanisms, thus suggesting that they function in
Phytophthora cinnamomi is a soil-borne plant pathogen that has caused widespread damage to vulnerable native ecosystems and agriculture systems across the world and shows no sign of abating. Management of the pathogen in the natural environment is difficult and the options are limited. In order to
UNASSIGNED
Maize produces an array of herbivore-induced terpene volatiles that attract parasitoids to infested plants and a suite of pathogen-induced non-volatile terpenoids with antimicrobial activity to defend against pests. Plants rely on complex blends of constitutive and dynamically produced
Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from Zea mays exhibit isotopically sensitive branching in the formation of mono- and sesquiterpene volatiles. The impact of the kinetic isotope effects and the stabilization of the reactive intermediates by hyperconjugation along with the
Multiproduct terpene synthases TPS4-B73 and TPS5-Delprim from maize (Zea mays) catalyze the conversion of farnesyl diphosphate (FDP) and geranyl diphosphate (GDP) into a complex mixture of sesquiterpenes and monoterpenes, respectively. Various isotopic and geometric isomers of natural substrates
Allelopathic effects of corn (Zea mays) extracts was studied, against seed germination and seedling growth of Phalaris minor, Helianthus annuus, Triticumaestivum, Sorghum halepense, Z. mays. Bioassay results showed that aqueous extracts of corn root and shoot, markedly affected seed germination, and
Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known
Maize (Zea mays) production, which is of global agro-economic importance, is largely limited by herbivore pests, pathogens and environmental conditions, such as drought. Zealexins and kauralexins belong to two recently identified families of acidic terpenoid phytoalexins in maize that mediate
Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of
Isoprenoids are the most diverse and abundant group of natural products. In plants, farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) are precursors to many isoprenoids having essential functions. Terpenoids and sterols are derived from FPP, whereas gibberellins, carotenoids,
UNASSIGNED
Maize ( Zea mays ) terpene synthase 7 (ZmTPS7) was characterized as a τ-cadinol synthase, which exhibited constitutive and inducible gene expression patterns, suggesting involvement in stress response. Maize produces a variety of terpenoids involved in defense response. Despite some
Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum
Terpene synthases (TPSs) play a vital role in forming the complex hydrocarbon backbones that underlie terpenoid diversity. Notably, some TPSs can add water prior to terminating the catalyzed reaction, leading to hydroxyl groups, which are critical for biological activity. A particularly intriguing
Upon herbivore attack, maize (Zea mays L.) emits a mixture of volatile compounds that attracts herbivore enemies to the plant. One of the major components of this mixture is an unusual acyclic C11 homoterpene, (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), which is also emitted by many other species