Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

IRon Nanoparticle Enhanced MRI in the Assessment of Myocardial infarctioN

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Staða
Styrktaraðilar
University of Edinburgh
Samstarfsmenn
British Heart Foundation

Lykilorð

Útdráttur

Ferumoxytol is an example of a 'smart' magnetic resonance contrast agent that consists of ultrasmall superparamagnetic particles of iron oxide (USPIOs) and is avidly taken up by macrophages. Through a previous work, the investigators have established that USPIOs can identify inflammation in the wall of abdominal aortic aneurysms and that this is associated with a three-fold increase in the rate of aneurysm growth. The utility of ferumoxytol for imaging cardiovascular inflammation in other areas of the body has yet to be established but Dr Alam has established uptake of USPIOs in the penumbra and infarct zone of the myocardium in patients with a recent myocardial infarction. The investigators wish to assess USPIO uptake in patients with recent acute myocardial infarction and identify the time course and determinants of cellular tissue inflammation. This will be the first clinical study to examine the ability of USPIOs to image myocardial inflammation following acute myocardial infarction.

Lýsing

Background

Coronary atherosclerosis is responsible for the initiation of acute myocardial infarction with plaque rupture leading to acute coronary thrombosis and myocardial infarction. Current treatment in the acute phase involves re-establishing vessel patency by percutaneous coronary intervention supported by anti-thrombotic therapy. Thereafter, statins, angiotensin-converting enzyme inhibitors and beta-blockade all have prognostic benefit but no treatments have been successfully developed to target post-infarction inflammatory pathways.

Necrotic cardiac muscle elicits an inflammatory cascade that serves to clear the infarct of dead cells and matrix debris. Human cardiac muscle has negligible regenerative capacity and ultimately inflammation leads to replacement of damaged tissue with a fibrotic scar. Enhancing reparative mechanisms following the inflammatory reaction to myocardial infarction may reduce cardiomyocyte injury, attenuate adverse remodelling and improve clinical outcome. A better understanding of the early post-infarct healing phase will also facilitate cell therapy strategies to engraft stem cells or stimulate regeneration. In order to achieve this goal, the investigators must better characterise the inflammatory processes that follow infarction and myocardial necrosis in humans.

Inflammatory cell mediated injury and healing in the infarcted myocardium

Neutrophils Inflammation within the infarcted myocardium is associated with induction of endothelial adhesion molecules and enhanced permeability of the microvasculature. Up regulation of chemokines including interleukin (IL)-8 and monocyte chemoattractant protein (MCP)-1 attracts neutrophils and monocytes to the site of injury. Early reperfusion therapy amplifies this inflammatory cell influx and accelerates the healing response through proliferative and maturation phases. Neutrophil adhesion to endothelium of infarcted myocardium occurs within minutes of reperfusion. Ischaemic cardiomyocytes are further injured by adherent neutrophils that release reactive oxygen species and destructive proteases including human neutrophil elastase (HNE) and proteinase 3. HNE has a wide range of substrates including matrix components elastin, fibronectin, and collagen types III and IV. Activated neutrophils also occlude microvessels and increase endothelial permeability contributing to myocardial oedema. Capillary plugging and obstruction by activated neutrophils contributes to failure of microvascular perfusion and increased infarct size within the 'no-reflow' zone. Neutrophil depletion reduces this phenomenon and infarct size following reperfusion in pre-clinical models.

Monocyte-derived Macrophages

Recruitment of monocytes into the infarcted myocardium is followed by maturation and differentiation into macrophages: a process dependent on growth factors such as macrophage-colony stimulating factor (M-CSF). Macrophages have multiple roles within the infarct including (i) phagocytic clearance of dead cells and debris, (ii) production of growth factors and cytokines that stimulate fibroblast growth and angioneogenesis, and (iii) matrix turnover through the production of matrix metalloproteases and their inhibitors. Macrophages are resident within 24 h of infarction and persist for up to 4 weeks. During this period, macrophages regulate infarct healing with the initial development of granulation tissue and subsequent scar formation. Murine studies suggest that distinct monocyte subsets regulate these different processes. Monocytes arriving within the first 3 days mature into macrophages that scavenge necrotic debris through inflammatory mediator expression, proteolysis and phagocytosis while monocytes arriving later on give rise to macrophages which promote reparative processes such as angioneogenesis and extracellular matrix deposition. Apoptosis is the primary mechanism determining longevity of neutrophils within sites of inflammation and infarction. Engulfment and clearance of apoptotic neutrophils by macrophages produces potent anti-inflammatory signals including release of transforming growth factor (TGF)-β. Combined with clearance of pro-inflammatory matrix fragments, these processes drive the switch to tissue repair and resolution of the post-infarct inflammatory response.

MCP-1 expression is increased in ischaemic myocardium following reperfusion and this accounts for a substantial proportion of the monocyte chemotactic activity. MCP-1 knockout mice exhibit delayed macrophage infiltration in the healing infarct with a prolonged inflammatory phase and delayed replacement of injured cardiomyocytes with granulation tissue. The MCP-1 deficient mice have similar size infarcts but attenuated remodelling compared to wild types. MCP-1 mRNA levels are increased 40-fold within non-infarcted myocardium and blockade of MCP-1 signalling with a deletion mutant of MCP-1 markedly reduced macrophage infiltration both within the infarct and non-infarcted myocardium. Widespread myocardial inflammatory cell infiltration beyond the non-infarcted zone has been observed in human autopsy specimens. Blockade of MCP-1 signalling is associated with improved survival rates and reduced left ventricular dilatation as well as reduced tumour necrosis factor (TNF)-α gene expression in the non-infarcted myocardium. These studies indicate that macrophage activity outside the infarct zone may contribute to adverse myocardial remodelling following myocardial infarction.

The inflammatory response to myocardial infarction is necessarily complex to coordinate the development of a healing scar from infarcted tissue. The role of the macrophage differs depending on differentiation and location within the myocardium. Therapeutic manipulation of this healing process will only come from understanding mechanisms and targeting reparative pathways. Indiscriminate immunosuppressive therapy in this setting may result in harm as observed in trials with methylprednisolone in acute myocardial infarction.

Magnetic Resonance Imaging in Tracking Cellular Inflammation

Iron oxide particles can be used as a contrast medium in magnetic resonance imaging since they can alter the magnetic properties and relaxation of tissues after application of radiofrequency pulses. Such contrast media consist of an iron oxide core within a dextran coat. They can be classified as "superparamagnetic iron oxide particles" (SPIOs) consisting of particles over 30 nm in diameter, or "ultrasmall superparamagnetic iron oxide particles" (USPIOs) which are under 30 nm in diameter. USPIOs are taken up by cells of the liver, spleen, bone marrow and lymph nodes. They have the capacity to extravasate through capillaries and be phagocytosed by tissue inflammatory cells of the reticuloendothelial system. These cells are predominately macrophages, but neutrophils have also been shown to take up USPIOs. This model of USPIO-enhanced MRI can highlight areas of inflammation in models of vertebral osteomyelitis, aortic atherosclerosis, arthritis-induced hyperperfusion, autoimmune encephalomyelitis, nephritis and nephropathy, cerebral ischaemia and renal ischaemia.

Pilot Data in Patients With Acute Myocardial Infarction

The investigators have undertaken preliminary proof-of-concept studies examining the possibility of using USPIOs to image the myocardium in patients having sustained a recent acute myocardial infarction. To date, the investigators have studied 16 patients following ST segment elevation myocardial infarction treated with reperfusion therapy and undertaken serial magnetic resonance imaging scans. By undertaking T2* maps of the myocardium before and 24-h after USPIO administration, the investigators calculated the R2* value (the inverse of T2*) and represented this as a colour-coded R2* map. This demonstrated a 2-3 fold increase in the R2* value in the infarct and peri-infarct area. As a negative control, the investigators have observed little or no change in the R2* value in myocardium remote from the site of ischaemia or skeletal muscle. The liver demonstrates marked uptake of USPIOs with a 3-4 fold increase in R2* value.

Dagsetningar

Síðast staðfest: 10/31/2013
Fyrst lagt fram: 06/18/2013
Áætluð skráning lögð fram: 11/20/2013
Fyrst sent: 11/26/2013
Síðasta uppfærsla lögð fram: 11/20/2013
Síðasta uppfærsla sett upp: 11/26/2013
Raunverulegur upphafsdagur náms: 05/31/2013
Áætlaður aðallokunardagur: 05/31/2015

Ástand eða sjúkdómur

Myocardial Infarction
Inflammation

Íhlutun / meðferð

Device: Ferumoxytol enhanced MRI

Stig

Stig 2

Armhópar

ArmurÍhlutun / meðferð
Experimental: USPIO timepoint 2-4 days
USPIO given 2-4 days post MI Ferumoxytol enhanced MRI
Experimental: USPIO timepoint 5-7 days
USPIO given 5-7 days post MI Ferumoxytol enhanced MRI
Experimental: USPIO tiempoint 11-21 days
USPIO given 11-21 days post MI Ferumoxytol enhanced MRI

Hæfniskröfur

Aldur hæfur til náms 18 Years Til 18 Years
Kyn sem eru hæf til námsAll
Tekur við heilbrigðum sjálfboðaliðum
Viðmið

Inclusion Criteria:

- >18 years

- Plasma troponin concentration >5 ng/mL; upper limit of normal 0.04 ng/mL)

- Acute myocardial infarction defined according to the Universal Definition of myocardial infarction

Exclusion Criteria:

- Critical (≥95%) left main stem coronary artery stenosis

- Continued symptoms of angina at rest or minimal exertion

- Past history of systemic iron overload or haemochromatosis

- Renal failure (estimated glomerular filtration rate <25 mL/min)

- Contraindication to magnetic resonance imaging

- Significant heart failure (Killip class ≥2)

- Known allergy to dextran- or iron-containing compounds

Útkoma

Aðal niðurstöður ráðstafanir

1. R2* value [MRI 24 hrs after USPIO infusion (regardless of time-point given)]

Marker of USPIO uptake (and inflammation) in each cohort after myocardial infarction. The USPIO infusion is given at different time-points for each cohort. However only the R2* value on the MRI 24 hours after infusion will constitute the primary end-point

Aðgerðir vegna aukaatriða

1. Serum Inflammatory markers [2-104 days post MI]

Correlation between blood and MRI inflammatory markers

Aðrar útkomuaðgerðir

1. MRI parameters [2-104 days]

Ejection fraction change over time

2. MRI parameters [Baseline and 3 months]

Late enhancement volume change

3. MRI parameter [Baseline]

T2 oedema

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge