Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Medical Genetics, Part C: Seminars in Medical Genetics 2011-Feb

Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Ayelet Erez
Sandesh C Sreenath Nagamani
Brendan Lee

Lykilorð

Útdráttur

The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCD), a group of inborn errors of hepatic metabolism that often result in life threatening hyperammonemia. Argininosuccinate lyase (ASL) is a cytosolic enzyme which catalyzes the fourth reaction in the cycle and the first degradative step, that is, the breakdown of argininosuccinic acid to arginine and fumarate. Deficiency of ASL results in an accumulation of argininosuccinic acid in tissues, and excretion of argininosuccinic acid in urine leading to the condition argininosuccinic aciduria (ASA). ASA is an autosomal recessive disorder and is the second most common UCD. In addition to the accumulation of argininosuccinic acid, ASL deficiency results in decreased synthesis of arginine, a feature common to all UCDs except argininemia. Arginine is not only the precursor for the synthesis of urea and ornithine as part of the urea cycle but it is also the substrate for the synthesis of nitric oxide, polyamines, proline, glutamate, creatine, and agmatine. Hence, while ASL is the only enzyme in the body able to generate arginine, at least four enzymes use arginine as substrate: arginine decarboxylase, arginase, nitric oxide synthetase (NOS) and arginine/glycine aminotransferase. In the liver, the main function of ASL is ureagenesis, and hence, there is no net synthesis of arginine. In contrast, in most other tissues, its role is to generate arginine that is designated for the specific cell's needs. While patients with ASA share the acute clinical phenotype of hyperammonemia, encephalopathy, and respiratory alkalosis common to other UCD, they also present with unique chronic complications most probably caused by a combination of tissue specific deficiency of arginine and/or elevation of argininosuccinic acid. This review article summarizes the clinical characterization, biochemical, enzymatic, and molecular features of this disorder. Current treatment, prenatal diagnosis, diagnosis through the newborn screening as well as hypothesis driven future treatment modalities are discussed.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge