Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Tissue Engineering - Part A. 2010-Jan

Cyclic acetal hydroxyapatite nanocomposites for orbital bone regeneration.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
Minal Patel
Martha W Betz
Elyse Geibel
Ketan J Patel
John F Caccamese
Domenick P Coletti
John J Sauk
John P Fisher

Lykilorð

Útdráttur

We have incorporated hydroxyapatite nanoparticles within cyclic acetal hydrogels to create nanocomposites that can be used to repair surgically created orbital floor defects in a rabbit animal model. Nanosized hydroxyapatite particles may improve tissue engineering scaffold properties because they have similar length scale of many cellular and molecular components and therefore can enhance cellular adhesion and migration. We hypothesize that inclusion of nanosized hydroxyapatite particles (20-70 nm) within cyclic acetal hydrogels would support bone defect repair. The objectives of our study include (1) characterization of nanocomposites in vitro, (2) investigation of tissue response and capsule tissue surrounding nanocomposites in vivo, and (3) investigation of the potential of nanocomposites to facilitate bone formation at 7- and 28-day time points in vivo. Experimental nanocomposite groups consisted of 0, 10, and 50 ng/mL nanosized hydroxyapatite. In vitro results indicated uniform dispersion of nanoparticles within nanocomposites and increased compressive moduli of nanocomposites with increase in nanoparticle concentration and bone marrow stromal cell viability within nanocomposites. In vivo results at day 7 indicated a tissue response of mild to increased inflammatory cells and presence of immature fibrous tissue. At day 28, tissue response consisted of mild inflammatory response and mature tissue. Quantitative results at day 7 indicated no difference in total bone percentage area between groups. The results also indicated that the tissue capsule surrounding the 0, 10, and 50 ng group implants had no clear organization. Quantitative results at day 28 indicated that the tissue capsule surrounding the 0, 10, and 50 ng group implants was an organized layer and the bone percentage for the 50 ng group was significantly higher than that of the remaining groups. Initial results indicated that our nanocomposites initiate a positive in vivo response in terms of bone growth. However, the percentage of bone area compared with the total area was low at both time points. Thus, in our study, even after addition of nanoparticles to cyclic acetal hydrogels, their biocompatible properties were maintained. On the other hand, addition of nanoparticles to cyclic acetal hydrogels did not lead to complete restoration of orbital floor defects.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge