Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 2003

Desynchronisation of spontaneously recurrent experimental seizures proceeds with a single rhythm.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
L Nyikos
B Lasztóczi
K Antal
R Kovács
J Kardos

Lykilorð

Útdráttur

Here we investigate the temporal properties of recurrent seizure-like events (SLEs) in a low-[Mg(2+)] model of experimental epilepsy. Simultaneous intra- and extracellular electric signals were recorded in the CA3 region of rat hippocampal slices whereby cytosolic [Ca(2+)] transients were imaged by fluorescence detection. Recurrence pattern analysis was applied to give a measure of synchrony of simultaneously recorded intra- and extracellular electric signals and the SLE frequencies were extracted by complex wavelet analysis. Slices from the juvenile, but not the young adult rats, displayed several high-amplitude triplets of electric and [Ca(2+)] transients, termed paroxysmal spikes, followed by an SLE. Occurrence of the full-blown SLE was associated with decreased synaptic activity between the paroxysmal spikes that were seen as incomplete SLE starting sequences. The time series of recurrent SLEs provide evidence for a single SLE rhythm as continuously declining from about 200 Hz to below 1 Hz at the onset and termination of SLE, respectively, with an intermediate spectral discontinuity, tentatively identified with the tonic/clonic transition. All other frequency components were the harmonics of the fundamental rhythm, whereby the gamma and the theta band oscillations were not detected as separate activities. Recurrence showed decreasing temporal synchrony of intra- and extracellular signals during the SLE, suggesting that coincidence is destroyed by the SLE. Blockade of gap junctions with 200 microM carbenoxolone ceased recurrent SLEs. Release of gap junction blockade shortened both SLEs and their tonic phase indicating that persistent changes occurred via an altered gap junction coupling. We conclude that the initially precise temporal synchrony is gradually destroyed during ictal events with a single rhythm of continuously decreasing frequency. Blockade of gap junction coupling might prevent epileptic synchronisation.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge