Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Nephrology Dialysis Transplantation 1996

New biomarkers of Maillard reaction damage to proteins.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Krækjan er vistuð á klemmuspjaldið
K J Wells-Knecht
E Brinkmann
M C Wells-Knecht
J E Litchfield
M U Ahmed
S Reddy
D V Zyzak
S R Thorpe
J W Baynes

Lykilorð

Útdráttur

The amount of advanced glycation end-products (AGE) in tissue proteins increases in diabetes mellitus, and the concentration of a subclass of AGEs, known as glycoxidation products, also increases with chronological age in proteins. The rate of accumulation of glycoxidation products is accelerated in diabetes and age-adjusted concentrations of two glycoxidation products, N epsilon-(carboxymethyl)lysine (CML) and pentosidine, correlate with the severity of complication in diabetic patients. Although AGEs and glycoxidation products are implicated in the development of diabetic complications, these compounds are present at only trace concentrations in tissue proteins and account for only a fraction of the chemical modifications in AGE proteins prepared in vitro. The future of the AGE hypothesis depends on the chemical characterization of a significant fraction of the total AGEs in tissue proteins, a quantitative assessment of their effects on protein structure and function, and an assessment of their role as mediators of biological responses. In this manuscript we describe recent work leading to characterization of new AGEs and glycoxidation products. These compounds include: (1) the imidazolone adduct formed by reaction of 3-deoxyglucosone with arginine residues in protein; (2) N epsilon-(carboxyethyl)lysine, an analogue of CML formed on reaction of methylglyoxal with lysine; (3) glyoxal-lysine dimer; and (4) methyl-glyoxal-lysine dimer, which are imidazolium crosslinks formed by reaction of glyoxal or methylglyoxal with lysine residues in protein. The presence of 3-deoxyglucosone, methylglyoxal and glyoxal in vivo and the formation of the above AGEs in model carbonyl-amine reaction systems suggests that these AGEs are also formed in vivo and contribute to tissue damage resulting from the Maillard reaction.

Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge