Bls 1 frá 88 niðurstöður
This study was designed to determine whether N-acetylcysteine (NAC, C(5)H(9)-NO(3)S), a compound from Allium species may be used as a complementary therapeutic agent, to inhibit high-sucrose induced-obesity and its effects on glucose tolerance, in vivo low-density lipoprotein (LDL)-oxidation and
People with upper body or visceral obesity have a much higher risk of morbidity and mortality from obesity-related metabolic disorders than those with lower body obesity. In an attempt to develop therapeutic strategies targeting visceral obesity, depot- specific differences in the expression of
OBJECTIVE
Oxidative stress plays critical roles in the pathogeneses of diabetes, hypertension, and atherosclerosis, but its effect on fat accumulation is still unclear. In this study, we analyzed the role of the well-known antioxidant and a glutathione (GSH) precursor N-acetylcysteine (NAC) in fat
There is limited information regarding the outcomes associated with acetaminophen (APAP) poisoning in obese individuals. It is possible that patients who are obese are more susceptible to APAP-induced liver injury, thereby diminishing the efficacy of antidotes such as N-acetylcysteine (NAC). We
OBJECTIVE
Antioxidants have been shown to ameliorate lipid-induced impairment of insulin action and beta cell function, both in vitro and in animal studies. The aim of the present study was to examine the effects of two orally administered antioxidants, N-acetylcysteine (NAC) and taurine (TAU), on
Reactive oxygen species (ROS) plays a crucial role in pathogenesis of insulin resistance (IR) and type 2 diabetes. In the United Kingdom Prospective Diabetes Study and its 10-year post-trial monitoring, a beneficial effect of early optimization of blood glucose control is clearly demonstrated. In
To study the effects of N-acetylcysteine (NAC, C(5)H(9)-NO(3)S) on high-sucrose diet-induced obesity and its effects on energy metabolism and cardiac oxidative stress, male Wistar 24 rats were divided into four groups (n=6): (C) given standard chow and water; (N) receiving standard chow and 2g/l
BACKGROUND
Diabetic bone disease is a major complication in diabetes mellitus and is characterized by low-turnover bone formation. Recent studies have demonstrated that oxidative stress could be associated with diabetic bone disease and that β-adrenergic antagonists could increase bone formation.
Hyperglycemia induces oxidative stress and thereby may exacerbate β-cell dysfunction in type 2 diabetes (T2DM). Notably, glutathione (GSH), synthesized from N-Acetylcysteine (NAC), neutralizes reactive oxygen species within cells and is low in individuals with diabetes.
OBJECTIVE
Determine if NAC
OBJECTIVE
Increased incidences of hepatotoxicity have been observed in obese patients with acute acetaminophen overdose. We evaluate whether the status of being overweight or obese is associated with increase in the development of hepatotoxicity and acute liver injury (ALI) in patients with acute
This study examined whether sucrose-rich diet (SRD)-induced hyperglycaemia, dyslipidemia and oxidative stress may be inhibited by N-acetylcysteine (C(5)H(9)-NO(3)S), an organosulfur from Allium plants. Male Wistar 40 rats were divided into four groups (n=10): (C) given standard chow and water; (N)
Obesity induced by high-fat (HF) diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione status and mitigates bone
Advanced glycation end products (AGEs) and their receptor (RAGE) system evoke inflammatory reactions and insulin resistance in adipocytes. Spa-derived green alga Mucidosphaerium sp. (MS) had anti-inflammatory properties in vitro. We examined here whether and how MS could ameliorate insulin
OBJECTIVE
Obesity is a worldwide problem, leading to cardiomyopathy. Oxidative stress and inflammation have been reported to play significant roles in developing obesity cardiomyopathy. N-acetylcysteine is a glutathione prodrug that preserves liver against steatosis via constraining the production
OBJECTIVE
Reports investigating the effects of antioxidants on obesity have provided contradictory results. We have previously demonstrated that treatment with the antioxidant N-acetylcysteine (NAC) inhibits cellular triglyceride (Tg) accumulation as well as total cellular monoamine oxidase A (MAOA)