Bls 1 frá 20 niðurstöður
In the literature it is maintained that phenol and p-cresol are produced in humans in the gut by bacteria from dietary protein. Both substances are absorbed from the small intestine and excreted in the urine. If the urinary output of phenol and p-cresol depends really on the dietary protein intake
Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from
Malnutrition is a common feature seen in chronic dialysis patients, and the survival rate of obese patients receiving such treatment is higher than that of lean patients. Irrespective of obesity or diabetes, dialysis patients commonly have insulin resistance, and the leading cause of death is
Obesity exerts negative effects on the metabolic homeostasis of cells in various tissues, but how it influences ovum metabolism is not fully understood. Previous studies demonstrate that oocyte genes that regulate oxidative stress, lipid metabolism, and inflammation are highly expressed in obese
OBJECTIVE
Obesity is linked to metabolic diseases characterized by insulin resistance, such as diabetes and cardiovascular disease. In this study, we investigated the metabolic disorders of uncomplicated obesity to identify early alterations in biological systems.
METHODS
Metabolic differences
BACKGROUND
Oxidant stress plays a key role in the development of chronic kidney disease (CKD). Experimental CKD leads to accumulation of uremic toxins (UT) in the circulation resulting in increased ROS production, which in turn, is known to activate the Na/K-ATPase/ROS amplification loop. Studies in
Protein-energy undernutrition during early development confers a lifelong increased risk of obesity-related metabolic disease. Mechanisms by which metabolic abnormalities persist despite catch-up growth are poorly understood.
We sought to determine whether abnormal metabolomic and intestinal
Protein fermentation by gut microbiota contributes significantly to the metabolite pool in the large intestine and may contribute to host amino acid balance. However, we have a limited understanding of the role that proteolytic metabolites have, both in the gut and in systemic circulation. A review
BACKGROUND
Roux-en-Y gastric bypass (RYGB) surgery is associated with weight loss, improved insulin sensitivity and glucose homeostasis, and a reduction in co-morbidities such as diabetes and coronary heart disease. To generate further insight into the numerous metabolic adaptations associated with
Prebiotic oligosaccharides are known to have significant impacts on gut microbiota and are thus widely used to program healthy microbiota composition and activity from infants to the elderly. Bifidobacteria and lactobacilli are among the major target microorganisms of oligosaccharides, but the
Ursodeoxycholic acid (UDCA) is a metabolic by-product of intestinal bacteria, showing hepatoprotective effects. However, its underlying molecular mechanisms remain unclear. The purpose of this study was to elucidate the action mechanisms underlying the protective effects of UDCA and vitamin E
Chronic kidney disease (CKD) is a worldwide health problem, because it is one of the most common complications of metabolic diseases including obesity and type 2 diabetes. Patients with CKD also develop other comorbidities, such as hypertension, hyperlipidemias, liver and cardiovascular diseases,
Alterations in gut microbiota composition offer insights that may be relevant for several chronic conditions, including obesity. This study aimed to evaluate the effect of (-)-epigallocatechin gallate (EGCG) on the modulation of gut microbiota and biomarkers of colonic fermentation end-products in
The gut microbiota regulates key hepatic functions, notably through the production of bacterial metabolites that are transported via the portal circulation. We evaluated the effects of metabolites produced by the gut microbiota from aromatic amino acids (phenylacetate, benzoate, p-cresol, and
Recent studies have established that dietary protein restriction improves metabolic health and glucose homeostasis. SLC6A19 (B⁰AT1) is the major neutral amino acid transporter in the intestine and carries out the bulk of amino acid absorption from the diet. Mice lacking SLC6A19 show signs of protein