Icelandic
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

ferulic acid/arabidopsis

Krækjan er vistuð á klemmuspjaldið
GreinarKlínískar rannsóknirEinkaleyfi
Bls 1 frá 33 niðurstöður
Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters
Anthocyanins are important for preventing photoinhibition and photodamage. By comprehensive reverse genetic analysis of chloroplast-produced H2O2-responsive genes, we isolated here an anthocyanin-deficient mutant under photooxidative stress, which lacked ferulate 5-hydroxylase 1 (FAH1) involved in
Cinnamoyl-CoA reductase 1 (CCR1, gene At1g15950) is the main CCR isoform implied in the constitutive lignification of Arabidopsis thaliana. In this work, we have identified and characterized two new knockout mutants for CCR1. Both have a dwarf phenotype and a delayed senescence. At complete
Abstract:Salt stress is one of the most common factors limiting plant cultivation. In this study, metabolic responses to salt stress in Arabidopsis thaliana (A. thaliana) leaves were analyzed in situ by neutral desorption-extractive electrospray ionization mass spectrometry (ND-EESI-MS) without any
Anthocyanins are secondary plant metabolites ubiquitous in the plant kingdom. They have different biological activities, so monitoring their content in plant tissue or in feed/food derived from plants may be an important task in different projects from various fields of molecular biology and
An anionic peroxidase RsPrx1 was purified (RZ=3.0) and characterized from roots of Chinese red radish (Raphanus sativus var. niger, Brassicaceae). The specific activity of RsPrx1 (micromol mg(-1) min(-1)) is 413.5 (ferulic acid); 258.7 (ABTS); 177.3 (caffeic acid) and 10.0 (guaiacol acid). The

Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Arabidopsis thaliana and other members of the Brassicaceae accumulate the hydroxycinnamic acid esters sinapoylmalate in leaves and sinapoylcholine in seeds. Our recent understanding of the phenylpropanoid pathway although complex has enabled us to perturb the sinapine biosynthesis pathway in plants.
Curcuminoids are phenylpropanoids with high pharmaceutical potential. Herein, we report an engineered artificial pathway in Escherichia coli to produce natural curcuminoids through caffeic acid. Arabidopsis thaliana 4-coumaroyl-CoA ligase and Curcuma longa diketide-CoA synthase (DCS) and curcumin

Multiform biosynthetic pathway of syringyl lignin in angiosperms.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
To clarify the pathway for biosynthesis of sinapyl alcohol in angiosperms, tracer experiments using stable isotopes were performed on robinia ( Robinia pseudoacacia L.), oleander ( Nerium indicum Mill.), magnolia ( Magnolia kobus DC.) and Arabidopsis thaliana (L.) Heynh. Precursors used in the
Root secretion of coumarin-phenolic type compounds has been recently shown to be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous studies revealed the identity of a few simple coumarins occurring in roots and exudates of Fe-deficient A. thaliana plants, and left open

The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Mature seeds of Arabidopsis thaliana and Brassica napus contain a complex mixture of aliphatic monomers derived from the non-extractable lipid polyesters deposited by various seed tissues. Methods of polyester depolymerization of solvent-extracted seeds and analysis of aliphatic monomers were

Mutants of Arabidopsis as tools to understand the regulation of phenylpropanoid pathway and UVB protection mechanisms.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
Plants accumulate certain phenylpropanoid compounds in the vacuoles of their epidermal and subepidermal cell layers thereby protecting the underlying tissue against UVB-induced damage. However, a number of mutants of Arabidopsis thaliana are known that fail to synthesize these protective pigments,
Phenylpropanoids are phenylalanine-derived specialized metabolites and include important structural components of plant cell walls, such as lignin and hydroxycinnamic acids, as well as ultraviolet and visible light-absorbing pigments, such as hydroxycinnamate esters (HCEs) and anthocyanins. Previous

Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage.

Aðeins skráðir notendur geta þýtt greinar
Skráðu þig / skráðu þig
We have assessed ultraviolet-B (UV-B)-induced injury in wild-type Arabidopsis thaliana and two mutants with altered aromatic secondary product biosynthesis. Arabidopsis mutants defective in the ability to synthesize UV-B-absorbing compounds (flavonoids in transparent testa 5 [tt5] and sinapate
The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and
Skráðu þig á
facebook síðu okkar

Heillasta gagnagrunnur lækningajurtanna sem studdur er af vísindum

  • Virkar á 55 tungumálum
  • Jurtalækningar studdir af vísindum
  • Jurtaviðurkenning eftir ímynd
  • Gagnvirkt GPS kort - merktu jurtir á staðsetningu (kemur fljótlega)
  • Lestu vísindarit sem tengjast leit þinni
  • Leitaðu að lækningajurtum eftir áhrifum þeirra
  • Skipuleggðu áhugamál þitt og vertu vakandi með fréttarannsóknum, klínískum rannsóknum og einkaleyfum

Sláðu inn einkenni eða sjúkdóm og lestu um jurtir sem gætu hjálpað, sláðu jurt og sjáðu sjúkdóma og einkenni sem hún er notuð við.
* Allar upplýsingar eru byggðar á birtum vísindarannsóknum

Google Play badgeApp Store badge