Bls 1 frá 18 niðurstöður
We aimed to investigate the potential beneficial effect of ferulic acid (FA) on stemness of human tendon-derived stem cells (hTSCs) in vitro and to elucidate the underlying molecular mechanism. The self-renewal ability of hTSCs was evaluated by colony formation and cell proliferation was determined
Spinal cord injury (SCI) is the leading cause of paralysis, disability and even death in severe cases, and neural stem cells (NSCs) transplant has been employed for repairing SCI. Ferulic acid (FA) is able to promote neurogenesis in various stem cell therapies. We aimed to investigate the effect of
The molecular structure optimization aimed at definite target is expected to improve its anti-myocardial ischemia reperfusion (I/R) injury. Ferulic acid derivatives could probably attenuate myocardial I/R injury when optimized on account of definite target succinate dehydrogenase (SDH). Herein, an
OBJECTIVE
Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated.
METHODS
We investigated the effect of FA on PC12 cells subjected to hypoxia stress,
BACKGROUND
To simulate the ischemia-reperfusion injury in vivo, hypoxia/reoxygenation injury model was established in vitro and primary cultured neonatal rat cardiomyocytes were underwent hypoxia with hydrosulfite (Na2S2O4) for 1 h followed by 1 h reoxygenation.
METHODS
Determination the cell
Osteogenic differentiation is regulated through multiple signaling networks that may include responses to hypoxia. Antioxidant ferulic acid (FA) can promote hypoxia signaling by inducing hypoxic-induced factor (HIF). However, whether FA could affect osteogenesis has not been explored. We examined
Ferulic acid protects against cardiac injury by scavenging free radicals. However, the role of mitophagy in ferulic acid-induced cardioprotection remains obscure. In the present study, H9c2 cells were exposed to hypoxia/reoxygenation and ferulic acid treatment during hypoxia. We illustrated the
OBJECTIVE
To investigate the neuroprotective effect of ferulic acid on PC12 cells injuries.
METHODS
With three models of PC12 cells injured by hypoxia, excitatory amino acids (EAA) and radical, the effect of ferulic acid on injured PC12 cells was observed by MTT assay.
RESULTS
Compared with three
The neuroprotective ability of the aqueous crude extract of Bryothamnion triquetrum (S. G. Gmelin) Howe and its cinnamic acids was studied in GT1-7 cells exposed to the combination of chemical hypoxia (KCN 3 mM) and aglycemia conditions. These ischemia-like conditions provoked acute and delayed
Nitric oxide (NO) may act as either a pro-oxidant or an antioxidant in biological systems. Previous work has found inhalation of NO improved survival in a high altitude rat model. NO donor isosorbide mononitrate derivants might have a protective effect against hypoxia. We synthesized a series of
Carbonic anhydrase IX (CAIX) is an emerging drug target for hypoxia associated cancers. To identify potent and selective inhibitors of CAIX, a small library of ferulic acid (FA) derivatives bearing triazole moiety has been designed, synthesized and evaluated against different human CA isoforms
Ferulic acid (FA) is a derivative of cinnamic acid. It is used in the treatment of heart head blood-vessel disease and exerts protective effects against hypoxia/ischemia-induced cell injury in the brain. This study investigated the potential neuroprotective effects of FA against ischemia/reperfusion
It is an important therapeutic strategy to protect mitochondria from oxidative stress, especially during ischemia-reperfusion. In the present study, an attempt has been made to evaluate the protective effects of caffeic acid phenethyl ester (CAPE) and its related phenolic compounds on mouse brain
Oxygen is vital for the existence of all multicellular organisms, acting as a signalling molecule regulating cellular activities. Specifically, hypoxia, which occurs when the partial pressure of oxygen falls below 5%, plays a pivotal role during development, regeneration and cancer. Here we report a
Ferulic acid (FA), derived from fruits and vegetables, is well-known as a potent antioxidant of scavenging free radicals. However, the role and underlying mechanism of FA on kidney ischemia reperfusion (I/R) injury are limited. Here, we explored the effects of FA on kidney I/R injury. The kidney I/R