Bls 1 frá 34 niðurstöður
The increasing incidence of metabolic syndrome requires more functional food products with low cost and excellent effects to assist treatment. The crude extract of Moringa oleifera Lam. showed excellent hypoglycemic activity. The current study was designed to investigate the effects and mechanism of
BACKGROUND
Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. One of the successful methods to prevent of the onset of diabetes is to control postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in the
OBJECTIVE
To investigate nutrient composition in moringa leaves and compare with those of kale (Brassica carinata) and Swiss chard (Beta vulgaris).
METHODS
Laboratory based study, nutrient composition of fresh and cooked leaves of M. stenopetala were analyzed.
METHODS
Gama-Gofa, south-western
Lectins are carbohydrate recognition proteins. cMoL, a coagulant Moringa oleifera Lectin, was isolated from seeds of the plant. Structural studies revealed a heat-stable and pH resistant protein with 101 amino acids, 11.67 theoretical pI and 81% similarity with a M. oleifera flocculent protein.
Objective: This study aims to analyze the effect of moringa cookies consumption to improve the quality of breastmilk on exclusive breastfeeding mothers.
Method: This was an
Moringa oleifera seeds contain a water-soluble lectin [water-soluble M. oleifera lectin (WSMoL)] that has shown coagulant activity. Magnesium ions are able to interfere with the ability of this lectin to bind carbohydrates. In this study, we performed structural characterization of WSMoL and
The research study was conducted to develop a healthy vegetables soup powder supplemented with soy flour, mushroom, moringa leaf and compare its nutritional facts with locally available soup powders. Proximate analysis and sensory evaluation were done by standard method. In this study, moisture,
BACKGROUND
Medicinal plants including stevia and moringa constitute an important source of health-beneficial bioactive components, and hence their intake may beneficially modulate biomarkers of chronic diseases.
OBJECTIVE
The objective of the present study was to investigate the effect of
Moringa oleifera Lam. is a perennial multipurpose tree that has been successfully used in folk medicine to cure several inflammatory processes. The aim of this study was to purify and characterize a chitin-binding protein from Moringa oleifera seeds, named Mo-CBP4, and evaluate its antinociceptive
BACKGROUND
The extract from Moringa oleifera seeds is used worldwide, especially in rural areas of developing countries, to treat drinking water. M. oleifera seeds contain the lectins cmol and WSMoL, which are carbohydrate-binding proteins that are able to reduce water turbidity because of their
α-Mannosidase (EC. 3.2.1.114) belonging to class II glycosyl hydrolase family 38 was purified from Moringa oleifera seeds to apparent homogeneity by conventional protein purification methods followed by affinity chromatography on Con A Sepharose and size exclusion chromatography. The purified enzyme
Oxidative / nitrosative stress can be caused by excessive production of ROS and RNS with metabolic reactions that change balance in favor of oxidants in cases where oxidants increase and antioxidants decrease in organisms using oxygen. ROS and RNS react with several biological macromolecules in
The efficacy of Moringa oleifera seed lectin (WSMoL) as a metal remover in water and the effects of metals on its hemagglutinating and antibacterial activities were determined. Aqueous metal solutions were incubated with WSMoL for 8 h at 4°C and the concentrations of metals were determined using
The seeds of Moringa oleifera were collected, air-dried, pulverized, and subjected to cold extraction with methanol. The methanol extract was screened phytochemically for its chemical components and used for acute and sub-acute toxicity studies in rats. The phytochemical screening revealed the
This study was aimed to determine the phytochemicals and nutritional compositions, antioxidant activity and sensorial properties of Moringa oleifera extracts. The powders prepared from leaves and pods were mixed separately at the ratios of 1:0, 0:1, 0.25:0.75, 0.5:0.5 and 0.75:0.25 and