Bls 1 frá 48 niðurstöður
A greenhouse sand culture experiment was conducted to study the effects of citric acid, oxalic acid, malic acid, and their mixture on the nitrogen accumulation, nodulation, and nitrogen fixation of soybean. After the application of test low molecular weight organic acids, the nitrogen accumulation
The organic acid content of soybean (Glycine max v. Hodgson) root, stem, and leaf tissue was followed for 33 days after germination. Malonate was the predominant acid in leaf and root tissue, whereas fumarate was predominant in the stem. The malonate concentrations of the stem and root showed
Nitrate supplied to legume plants inhibits the activity of nitrogenase in Rhizobium bacteroids in root nodules. The accumulation of amino N which is known to occur in Glycine max (L.) Merr. nodules as nitrogenase activity declines was studied in more detail by analysis of changes in free amino acid
Background: Hydrogen sulphide (H2S) is involved in regulating physiological processes in plants. We investigated how H2S ameliorates iron (Fe) deficiency in soybean (Glycine max L.) seedlings. Multidisciplinary
In the present study, 19 soybean (Glycine max L.) cultivars were analyzed and found to differ considerably in aluminum (Al) resistance. The cultivars Zhechun No. 2 (Al-resistant) and Zhechun No. 3 (Al-sensitive) were selected for further analysis. Experiments were performed with plants grown in full
Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol
The phytotoxicity of formaldehyde for spider plants (Chlorophytum comosum L.), tobacco plants (Nicotiana tabacum L. cv Bel B and Bel W3), and soybean (Glycine max L.) cell-suspension cultures was found to be low enough to allow metabolic studies. Spider plant shoots were exposed to 7.1 [mu]L L-1
Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil
Aluminum (Al) toxicity and phosphorus (P) deficiency often coexist in acid soils that severely limit crop growth and production, including soybean (Glycine max). Understanding the physiological mechanisms relating to plant Al and P interactions should help facilitate the development of more
Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the
Magnesium (Mg) deficiency, a widespread yet overlooked problem in agriculture, has been reported to retard plant growth and development, through affecting key metabolic pathways. However, the metabolic responses of plant to Mg deficiency is still not fully understood. Here we report a metabolomic
Rhizobium japonicum bacteroids isolated from soybean (Glycine max L.) nodules oxidized (14)C-labeled succinate, pyruvate, and acetate in a manner consistent with operation of the tricarboxylic acid cycle and a partial glyoxylate cycle. Substrate carbon was incorporated into all major cellular
Prolonged, continuous rainfall is the main climatic characteristic of autumn in Southwest China, and it has been found to cause mildew outbreaks in pre-harvest soybean fields. Low temperature and humidity (LTH) stress during soybean maturation in the field promotes pre-harvest mildew, resulting in
Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress
Aluminium (Al) toxicity is a major chemical constraint limiting plant growth and production on acidic soils. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule that plays crucial roles in plant growth and stress tolerance. However, there is no knowledge regarding whether melatonin is