Bls 1 frá 72 niðurstöður
Similar to other plant-parasitic nematodes, root lesion nematodes possess an array of enzymes that are involved in the degradation of the plant cell wall. Here we report the identification of a gene encoding a cell wall-degrading enzyme, pectin methylesterase PME (EC 3.1.1.11), in the root lesion
Recent studies demonstrating an in situ formation of methane (CH(4)) within foliage and separate observations that soil-derived CH(4) can be released from the stems of trees have continued the debate about the role of vegetation in CH(4) emissions to the atmosphere. Here, a study of the role of
Pectin methylesterases (PME) catalyze the de-esterification of methoxylated pectins in plant cell walls. We have isolated a 1.9 kb regulatory region upstream from the Lupme3 coding sequence of Linum usitatissimum L. (flax) using a 'Polymerase Chain Reaction (PCR) walking' strategy. Two 5' truncated
Plant virus-encoded movement proteins promote viral spread between plant cells via plasmodesmata. The movement is assumed to require a plasmodesmata targeting signal to interact with still unidentified host factors presumably located on plasmodesmata and cell walls. The present work indicates that a
A transgenic tobacco plant (Nicotiana tabacum L.) expressing a fungal pectin methylesterase (PME; EC 3.1.1.11) gene derived from a black filamentous fungus, Aspergillus niger was created. Fungal PME should have a wider range of adaptability to substrate pectin compared with plant PME. As expected,
Oligodeoxyribonucleotide primers were designed from conserved amino acid (aa) sequences between pectin lyase D (PNLD) from Aspergillus niger and pectate lyases A and E (PELA/E) from Erwinia chrysanthemi. The polymerase chain reaction (PCR) was used with these primers to amplify genomic DNA from the
Polygalacturonate 4-[alpha]-galacturonosyltransferase (EC 2.4.1.43) activity has been identified in microsomal membranes isolated from tobacco (Nicotiana tabacum L. cv Samsun) cell-suspension cultures. Incubation of UDP-[14C]galacturonic acid with tobacco membranes results in a time-dependent
Of the two commercially cultivated coffee (Coffea) species, C. arabica (arabica) is highly susceptible and C. canephora (robusta) is highly resistant to the insect pest Xylotrechus quadripes (Coleoptera: Cerambycidae), commonly known as coffee white stem borer (CWSB). We constructed a
We report that unprocessed tobacco pectin methylesterase (PME) contains N-terminal pro-sequence including the transmembrane (TM) domain and spacer segment preceding the mature PME. The mature portion of PME was replaced by green fluorescent protein (GFP) gene and various deletion mutants of
Tobacco suspension culture cell (Nicotiana tabacum, BY2) was transformed with an Aspergillus niger pectin methylesterase (PME; EC 3.1.1.11) cDNA under the control of cauliflower mosaic virus (CaMV) 35S promoter. The transformant indicated a significant rise of PME and the level of methanol in the
Antisense transgenesis of tobacco (Nicotiana tabacum) with a partial flax (Linum usitatissimum L.) pectin methylesterase (Lupme3) cDNA sequence yielded plants with altered pollen content. Moreover, the characteristically sculptured cell wall surrounding the pollen grains was modified in transgenic
Pectin methylesterases (PMEs) catalyse the demethylation of pectin within plant cell walls, releasing methanol (MeOH) in the process. Thus far, PMEs have been found to be involved in diverse processes such as plant growth and development and defence responses against pathogens. Herbivore attack
Plant leaves undergo a sink-source modification of intercellular macromolecular transport during the transition from carbon import to carbon export. After assessing the role of metabolite signaling in gene regulation in Nicotiana tabacum sink and source leaves, we observed increased pectin
Pectin methylesterase (PME), a ubiquitous enzyme in plants, de-esterifies the methoxylated pectin in the plant cell wall. We have characterized a PME gene (designated as pmeu1) from tomato (Lycopersicon esculentum) with an expression that is higher in younger root, leaf, and fruit tissues than in
Pectin methylesterases (PMEs) were detected in tobacco ( Nicotiana tabacum) pollen tubes grown in vitro. Seven PME isoforms exhibiting a wide isoelectric-point (pI) range (5.3-9.1) were found in crude extracts of pollen tubes. These isoforms were mainly retrieved in supernatants after low- and