Bls 1 frá 19 niðurstöður
In recent years, considerable emphasis has been placed on identifying new cancer chemopreventive agents, which could be useful for the human population. Tephrosia purpurea has been shown to possess significant activity against hepatotoxicity, pharmacological and physiological disorders. Earlier we
BACKGROUND
Cancer is characterized by uncontrolled cell division caused by dysregulation of cell proliferation. Therefore, agents that impair cancer cell proliferation could have potential therapeutic value. Higher plants are considered to be a good source of anticancer agents, and several
[structure: see text] Three novel flavonoids, (+)-tephrorins A (1) and B (2) and (+)-tephrosone (3), were isolated from Tephrosia purpurea. Their structures were elucidated by NMR spectral analysis, and their absolute configurations were determined by Mosher ester methodology. Compounds 1 and 2 are
The antioxidant and cytotoxic properties of four major parts of methanolic extracts of Tephrosia purpurea including leaves, root, stem and seed were investigated and compared. In vitro antioxidant activity of T. purpurea extracts was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric
CONTEXT. Tephrosia toxicaria is currently known as Tephrosia sinapou (Buc'hoz) A. Chev. (Fabaceae) and is a source of compounds such as flavonoids that inhibit inflammatory pain.
OBJECTIVE
To investigate the analgesic effect and mechanisms of the ethyl acetate extract of T. sinapou in inflammatory
A new butenylflavanone, (2S)-5-hydroxy-7-methoxy-8-[(E)-3-oxo-1-butenyl]flavanone (1), and a new rotenoid, 4',5'-dihydro-11,5'-dihydroxy-4'-methoxytephrosin (2), as well as three active flavonoids of previously known structure, isoliquiritigenin (3), genistein (4), and chrysoeriol (5), along with
A benzil, calophione A, 1-(6'-Hydroxy-1',3'-benzodioxol-5'-yl)-2-(6''-hydroxy-2''-isopropenyl-2'',3''-dihydro-benzofuran-5''-yl)-ethane-1,2-dione and three coumestan derivatives, tephcalostan B, C and D were isolated from the roots of Tephrosia calophylla. Their structures were deduced from
OBJECTIVE
The chemopreventive potential of Tephrosia purpurea extract (TPE) on N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma (HCC) in Wistar rats was assessed.
METHODS
HCC was induced by a single intraperitoneal injection of NDEA (200 mg/kg) followed by subcutaneous injections of
Tephrosia purpurea (L.) Pers. is a well-known plant in Ayurveda and named "Sarwa wranvishapaka" for its property to heal wounds. Traditionally, it is practiced for impotency, asthma, dyspepsia, hemorrhoids, syphilis gonorrhea, rheumatism, enlargement of kidney and spleen. It is an
BACKGROUND
Tephrosia purpurea is an Indian herb used in traditional medicine to treat various diseases such as jaundice, asthma, liver and urinary disorders. However, the anti-cancer potential of T. purpurea on hepatocellular carcinoma (HCC) is poorly understood. Therefore, this study aims to
We describe stereocontrolled semi-syntheses of deguelin and tephrosin, anti-cancer rotenoids isolated from Tephrosia vogelii. Firstly, we present a new two-step transformation of rotenone into rot-2'-enonic acid via a zinc-mediated ring opening of rotenone hydrobromide. Secondly, following
Betulinic acid (BA) has anti cancer and anti-HIV activity and has been proved to be therapeutically effective against cancerous and HIV-infected cells. Human serum albumin (HSA) is the predominant protein in the blood. Most drugs that bind to HSA will be transported to other parts of the body. Using
Phytochemical analysis of a methanol-dichloromethane (1:1) extract of the aerial parts of Tephrosialinearis led to the isolation of 18 compounds. Seven of these, namely, lineaflavones A-D (1-4), 6-methoxygeraldone (5), 8″-acetylobovatin (6), and
Phytochemical investigation of Tephrosia vogelii seedpods led to the isolation of twelve compounds: vogelisoflavone A (1), vogelisoflavone B (2), isopongaflavone (3), onogenin, luteolin, 4',7-dihydroxy-3'-methoxyflavanone, trans-p-hydroxycinnamic acid, tephrosin, 2-methoxygliricidol,
A new flavone, named hildeflavone (1) along with 7 other known flavonoids were isolated from the aerial parts of Tephrosia hildebrandtii Vatke. Their characterisation was based on NMR and MS data analysis. The anti-inflammatory properties of the crude extract, isolated compounds and