Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FEBS Journal 2007-Apr

A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
J David Carroll
Irena Pastuszak
Vineetha K Edavana
Yuan T Pan
Alan D Elbein

Parole chiave

Astratto

Trehalose is a nonreducing disaccharide of glucose (alpha,alpha-1,1-glucosyl-glucose) that is essential for growth and survival of mycobacteria. These organisms have three different biosynthetic pathways to produce trehalose, and mutants devoid of all three pathways require exogenous trehalose in the medium in order to grow. Mycobacterium smegmatis and Mycobacterium tuberculosis also have a trehalase that may be important in controlling the levels of intracellular trehalose. In this study, we report on the purification and characterization of the trehalase from M. smegmatis, and its comparison to the trehalase from M. tuberculosis. Although these two enzymes have over 85% identity throughout their amino acid sequences, and both show an absolute requirement for inorganic phosphate for activity, the enzyme from M. smegmatis also requires Mg(2+) for activity, whereas the M. tuberculosis trehalase does not require Mg(2+). The requirement for phosphate is unusual among glycosyl hydrolases, but we could find no evidence for a phosphorolytic cleavage, or for any phosphorylated intermediates in the reaction. However, as inorganic phosphate appears to bind to, and also to greatly increase the heat stability of, the trehalase, the function of the phosphate may involve stabilizing the protein conformation and/or initiating protein aggregation. Sodium arsenate was able to substitute to some extent for the sodium phosphate requirement, whereas inorganic pyrophosphate and polyphosphates were inhibitory. The purified trehalase showed a single 71 kDa band on SDS gels, but active enzyme eluted in the void volume of a Sephracryl S-300 column, suggesting a molecular mass of about 1500 kDa or a multimer of 20 or more subunits. The trehalase is highly specific for alpha,alpha-trehalose and did not hydrolyze alpha,beta-trelalose or beta,beta-trehalose, trehalose dimycolate, or any other alpha-glucoside or beta-glucoside. Attempts to obtain a trehalase-negative mutant of M. smegmatis have been unsuccessful, although deletions of other trehalose metabolic enzymes have yielded viable mutants. This suggests that trehalase is an essential enzyme for these organisms. The enzyme has a pH optimum of 7.1, and is active in various buffers, as long as inorganic phosphate and Mg(2+) are present. Glucose was the only product produced by the trehalase in the presence of either phosphate or arsenate.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge