Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2011-Jan

Antioxidant activity of β-carotene compounds in different in vitro assays.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Lars Mueller
Volker Boehm

Parole chiave

Astratto

β-Carotene (BC) is the most abundant carotenoid in human diet, almost solely as(all-E)-isomer. Significant amounts of (Z)-isomers of BC are present in processed food as well as in mammalian tissues. Differences are described for the activity of various BC isomers in forming retinal and protecting against cancer and cardiovascular diseases. Eccentric cleavage of BC leads to degradation products such as carotenals. A variety of negative consequences were published for the non-vitamin A active BC metabolites, such as inducing the carcinogenesis of benzo[a]pyrene, impairing mitochondrial function, or increasing CYP activity. To increase the knowledge on the antioxidant activity, a variety of BC isomers and metabolites were tested in various in vitro assays. In the present study, no ferric reducing activity (FRAP assay) was observed for the BC isomers. Between the major BC isomers (all-E, 9Z, and 13Z) no significant differences in bleaching the ABTS●+ (αTEAC assay) or in scavenging peroxyl radicals (ROO●) generated by thermal degradation of AAPH (using a chemiluminescence assay) were detected.However, the (15Z)-isomer was less active, maybe due to its low stability. The degradation to β-apo-carotenoids increased FRAP activity and ROO● scavenging activity compared to the parent molecule. Dependence on chain length and character of the terminal function was determined in αTEAC assay with following order of increasing activity: β-apo-8'-carotenal < β-apo-8'-carotenoic acid ethyl ester < 6'-methyl-β-apo-6'-carotene-6'-one (citranaxanthin). The results indicate that BC does not lose its antioxidant activity by degradation to long chain breakdown products.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge