Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2005-Dec

Inhibition of acetyl-CoA carboxylase isoforms by pyridoxal phosphate.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Weissy M Lee
Jason E Elliott
Roger W Brownsey

Parole chiave

Astratto

Mammalian isoforms of acetyl-CoA carboxylase (ACC-1 and ACC-2) play important roles in synthesis, elongation, and oxidation of long-chain fatty acids, and the possible significance of ACC in the development of obesity has led to interest in the development of inhibitors. Here, we demonstrate that pyridoxal phosphate (PLP) is a linear and reversible inhibitor of ACC-1 and ACC-2. ACC from rat liver and white adipose tissue (largely ACC-1) exhibited an IC50 of approximately 200 microm, whereas ACC-2 from heart or skeletal muscle exhibited an IC50 exceeding 500 microm. ACC from rat liver was equally sensitive to PLP following extensive purification by avidin affinity chromatography. When added before citrate, PLP inhibited ACC with a Ki of approximately 100 microm, reducing maximal activity >90% and increasing the Ka for citrate approximately 5-fold but having little effect on substrate Km values. Pre-treatment with citrate increased the apparent Ki for ACC inhibition by PLP by approximately 4-fold. Inhibition of ACC was reversed by removal of PLP, either by washing or by reaction with hydroxylamine or amino-oxyacetate. ACC was irreversibly inhibited and radiolabeled, to a stoichiometry of approximately 0.4 mol[H]/mol subunit, in the presence of PLP plus [3H]borohydride. Studies with structurally related compounds demonstrated that the reactive aldehyde and negatively charged substituents of PLP contribute importantly to ACC inhibition. The studies reported here suggest a rationale to develop ACC inhibitors that are not structurally related to the substrates or products of the reaction and an approach to probe the citrate-binding site of the enzyme.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge