Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Sports Physiology and Performance 2007-Jun

Metabolic response and fatigue in soccer.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Jens Bangsbo
Fedon Marcello Iaia
Peter Krustrup

Parole chiave

Astratto

The physical demands in soccer have been studied intensively, and the aim of the present review is to provide an overview of metabolic changes during a game and their relation to the development of fatigue. Heart-rate and body-temperature measurements suggest that for elite soccer players the average oxygen uptake during a match is around 70% of maximum oxygen uptake (VO2max). A top-class player has 150 to 250 brief intense actions during a game, indicating that the rates of creatine-phosphate (CP) utilization and glycolysis are frequently high during a game, which is supported by findings of reduced muscle CP levels and severalfold increases in blood and muscle lactate concentrations. Likewise, muscle pH is lowered and muscle inosine monophosphate (IMP) elevated during a soccer game. Fatigue appears to occur temporarily during a game, but it is not likely to be caused by elevated muscle lactate, lowered muscle pH, or change in muscle-energy status. It is unclear what causes the transient reduced ability of players to perform maximally. Muscle glycogen is reduced by 40% to 90% during a game and is probably the most important substrate for energy production, and fatigue toward the end of a game might be related to depletion of glycogen in some muscle fibers. Blood glucose and catecholamines are elevated and insulin lowered during a game. The blood free-fatty-acid levels increase progressively during a game, probably reflecting an increasing fat oxidation compensating for the lowering of muscle glycogen. Thus, elite soccer players have high aerobic requirements throughout a game and extensive anaerobic demands during periods of a match leading to major metabolic changes, which might contribute to the observed development of fatigue during and toward the end of a game.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge