Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Controlled Release 2004-Sep

Paclitaxel nanoparticles for the potential treatment of brain tumors.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Joanna M Koziara
Paul R Lockman
David D Allen
Russell J Mumper

Parole chiave

Astratto

Despite the advances in tumor therapy, patients with primary brain tumors and brain metastases have a very poor prognosis. Low responses to chemotherapy are mainly attributed to impermeability of the blood-brain barrier to cytotoxic agents. Paclitaxel has been shown to be active against gliomas and various brain metastases. However, its use in treatment of brain tumors is limited due to low blood-brain barrier permeability and serious side effects associated with administration of the paclitaxel solvent, Cremophor EL. Lack of paclitaxel brain uptake is thought to be associated with the p-glycoprotein (p-gp) efflux transporter. In this work, paclitaxel (PX) was entrapped in novel cetyl alcohol/polysorbate nanoparticles. Paclitaxel nanoparticles (PX NPs) were characterized by means of size, short-term stability, drug entrapment efficiency, and release profile. The PX NP cytotoxicity profile was monitored using two different cell lines, U-118 and HCT-15. Brain uptake of PX NPs was evaluated using an in situ rat brain perfusion model. The results suggest that entrapment of paclitaxel in nanoparticles significantly increases the drug brain uptake and its toxicity toward p-glycoprotein expressing tumor cells. It was hypothesized that PX NPs could mask paclitaxel characteristics and thus limit its binding to p-gp, which consequently would lead to higher brain and tumor cell uptake of the otherwise effluxed drug.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge