Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2020-Jul

Carbohydrate metabolism and transport in apple roots under nitrogen deficiency

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Il collegamento viene salvato negli appunti
Haiyan Zhao
Simin Sun
Lihua Zhang
Jingjing Yang
Zhengyang Wang
Fengwang
Mingjun Li

Parole chiave

Astratto

Soluble sugars play important roles in plant development and stress response, and the nitrogen supply level can affect the among-organ distribution and metabolism of sugar in plants and, in turn, plant growth. To explore the adaptive response of apple root growth to nitrogen supply and its relationship with sugar metabolism, we used a hydroponic culture system to study how the nitrogen supply affects soluble sugar concentrations and sugar metabolism in apple roots. In hydroponic seedlings of Malus hupehensis, low nitrogen application caused rapid and vigorous proliferation of lateral roots, and the transcript levels of MdSOT1 and MdSUT3, which are involved in photoassimilate unloading in roots, were upregulated. The accumulation of sorbitol and sucrose in the fine roots was higher, and the activities of sucrose synthase, invertase and sorbitol dehydrogenase, which are involved in the degradation of sucrose and sorbitol, were significantly increased under a low nitrogen supply. Genes involved in sugar degradation, such as MdSDH1, MdSuSy5, and MdNINV3, play important roles in the efficient use of sorbitol and sucrose under nitrogen deficiency. Additionally, the activity of fructokinase and hexokinase, which are involved in hexose phosphorylation, and transcript levels of MdFRK2 and MdHK3 were significantly upregulated under nitrogen deficiency, and the hexose phosphate products F6P and G6P accumulated greatly in the roots. These results showed that the sugar metabolism capability and sink strength of the roots increased under low nitrogen, indicating that low nitrogen promotes the utilization of sugar in the roots to meet the demand for sugar under rapid root growth.

Keywords: Apple; Carbohydrate metabolism; Carbohydrate transporter; Nitrogen deficiency; Root.

Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge