Pagina 1 a partire dal 22 risultati
Hydrogen (H2) protects against inflammation-induced oxidative stress. Nondigestible saccharides (NDSs) enhance colonic H2 production. We examined whether colonic H2 transfers to tissues in the abdominal cavity and whether it affects expression of proinflammatory cytokines. In Expts. 1 and 2, rats
The ability of Actinomyces naeslundii to convert sucrose to extracellular homopolymers of fructose and to catabolize these types of polymers is suspected to be a virulence trait that contributes to the initiation and progression of dental caries and periodontal diseases. Previously, we reported on
Fructan polymer, synthesized from sucrose by the extracellular fructosyltransferase of Streptococcus mutans, is thought to contribute to the progression of dental caries. It may serve as an extracellular storage polysaccharide facilitating survival and acid production. It may also have a role in
To define the role of dental plaque fructans and the enzymes involved in their metabolism in the initiation and progression of dental caries, we constructed otherwise-isogenic mutants of Streptococcus mutans defective in the ability to synthesize fructans, to degrade fructans, or to do both. The
Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging,
Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the
Levansucrases, which belong to the glycoside hydrolase family 68 (GH68), synthesize β (2-6)-linked fructan levan with sucrose as substrate. We described the use of a levansucrase (Bl_SacB) from Bacillus licheniformis 8-37-0-1 for catalysis of fructosyl transfer to obtain high levan yield previously.
The Streptococcus mutans extracellular fructosyltransferase (FTF) enzyme may play a role in the formation of dental caries by synthesizing a fructan polymer that serves as an extracellular storage polysaccharide. We sought to determine if an FTF-deficient strain of S. mutans was less virulent than
In cereal grain sucrose is converted into storage carbohydrates; mainly starch, fructan and (1,3;1,4)-β-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley resulted in high MLG and low starch content in mature grains. Morphological changes included
Streptococcus mutans produces several enzymes which metabolize sucrose. Three glucosyltransferase genes (gtfB, gtfC, and gtfD) and a single fructosyltransferase gene (ftf) encode enzymes which are important in formation of exopolysaccharides. Mutants of S. mutans V403 carrying single and multiple
Isolation of colonies with altered colonial morphology was frequently observed following infection of specific pathogen-free rats fed a caries-inducing high sucrose diet with two human strains of Streptococcus salivarius. These isolates produced unique rough colonies on mitis salivarius agar, in
The total effect of sucrose-splitting activity from three sucrose metabolizing enzymes has been investigated in "resting" saliva in contact with dental plaque material in 356 military recruits. Invertase effect is defined as the splitting of sucrose into equimolar quantities of glucose and fructose,
Carbohydrate processing enzymes are sophisticated tools of living systems that have evolved to execute specific reactions on sugars. Here we present for the first time the site-selective chemical modification of exposed tyrosine residues in SacB, a levansucrase from Bacillus megaterium (Bm-LS) for
Polymers of D-fructose produced by a variety of oral bacteria are believed to function as extracellular carbohydrate reserves. Degradation of these polysaccharides in plaque following exhaustion of dietary carbohydrates is thought to contribute to the extent and duration of the acid challenge to the
Streptococcus mutans possesses several extracellular sucrose-metabolizing enzymes which have been implicated as important virulence factors in dental caries. This study was initiated to investigate the genetic regulation of one of these enzymes, the extracellular fructosyltransferase (Ftf). Fusions