Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

l lactic acid/solanum tuberosum

Il collegamento viene salvato negli appunti
ArticoliTest cliniciBrevetti
9 risultati

An integrated bioconversion process for production of L-lactic acid from starchy potato feedstocks.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this
88 g/L lactic acid was produced from waste potato starch (equivalent to 100 g/L glucose) in a bubble column reactor using appropriate acid-adapted precultures of Rhizopus arrhizus. Further experiment showed that repeated dilution of cultures caused the decrease of lactic acid concentration and

Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Thirty-eight strains of the fungus Rhizopus oryzae were grown on potato pulp, an agricultural by-product of the starch industry. Either lactic acid or fumaric acid and ethanol were formed, and the ratio differed among the strains tested. The highest amount of L(+)-lactic acid (10 mg/g fresh matter)

Production of L(+)-lactic acid using acid-adapted precultures of Rhizopus arrhizus in a stirred tank reactor.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Cultivations of filamentous fungi in stirred tank reactors (STRs) to produce metabolites are often limited by insufficient mixing and mass transfer because of the formation of mycelial clumps inside the reactors. This study developed an acid-adapted preculture approach to control the morphology of
Rhizopus arrhizus, strain DAR 36017, produced L(+)-lactic acid in a simultaneous saccharification and fermentation process using starch waste effluents. Lactic acid at 19.5-44.3 g l(-1) with a yield of 0.85-0.96 g g(-1) was produced in 40 h using 20-60 g starch l(-1). Supplementation of nitrogen
BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the

Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato

Mass production of spores of lactic acid-producing Rhizopus oryzae NBRC 5384 on agar plate.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Mass production of sporangiospores (spores) of Rhizopus oryzae NBRC 5384 (identical to NRRL 395 and ATCC 9363) on potato-dextrose-agar medium was studied aiming at starting its L(+)-lactic acid fermentation directly from spore inoculation. Various parameters including harvest time, sowed spore

Enhanced Lactic Acid Production by Adaptive Evolution of Lactobacillus paracasei on Agro-industrial Substrate.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
The aim of this study was to perform the adaptation of Lactobacillus paracasei NRRL B-4564 to substrate through adaptive evolution in order to ensure intensive substrate utilization and enhanced L (+)-lactic acid (LA) production on molasses-enriched potato stillage. To evaluate the strain response
Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge