8 risultati
Multidrug resistance (MDR) represents a serious problem in cancer treatment. One strategy to overcome this obstacle is to identify agents that are selectively lethal to MDR cells. The aim of this study was to discover novel compounds against MDR leukemia and to determine the molecular mechanisms
Acivicin (NSC 163501) and dichloroallyl lawsone (NSC 126771) are potent inhibitors of nucleotide biosynthesis with consequent anti-cancer activity against certain experimental tumors. To determine in detail the metabolic events induced by each inhibitor, we have devised a new two-dimensional
Naphthoquinones are considered privileged structures for anticancer drug molecules. The Heck reaction of 2-hydroxy-1,4-naphthoquinone (lawsone) with 1-bromo-3-methyl-2-butene offered easy access to lapachol. Several naturally occurring linear and angular heterocyclic quinoids (α-lapachone,
Morita-Baylis-Hillman acetates and α-bromonitroalkenes have been employed in cascade reactions with lawsone and 2-aminonaphthoquinone for the one-pot synthesis of heterocycle fused quinonoid compounds. The reactions reported here utilized the 1,3-binucleophilic potential of hydroxy- and
Polyamine-naphthoquinone conjugates 5a-c were synthesized by nucleophilic displacement of 2-methoxy-lawsone 3a, 2-methoxylapachol 3b and 2-methoxy-nor-lapachol 3c with the polyamine N1-Boc-N5-Bn-spermidine 4. Unprotected derivatives 6a-c were synthesized to evaluate the effect of the protective Boc
The cytotoxic activity of amino (3a-e), aza-1-antraquinone (4a-e) lapachol derivatives against Ehrlich carcinoma and human K562 leukemia cells was investigated. Cell viability was determined using MTT assay, after 48 (Ehrlich) or 96 h (K562) of culture, and vincristine (for K562 leukemia) and
N-phenyl ureidobenzenesulfonates (PUB-SOs) is a new class of promising anticancer agents inducing replication stresses and cell cycle arrest in S-phase. However, the pharmacological target of PUB-SOs was still unidentified. Consequently, the objective of the present study was to identify and confirm
A series of phenylbipyridinylpyrazoles was synthesized through the reaction of 2-(4-(2-chloropyridin-4-yl)-3-(3-methoxy-5-methylphenyl)-1H-pyrazol-1-yl)acetonitrile (4) with different 6-substituted pyridine-3-ylboronic acids. The final compounds 5a-j were screened at 10 µM against over 60 tumor cell