Pagina 1 a partire dal 15986 risultati
BACKGROUND
Eribulin, an inhibitor of microtubule dynamics, shows antitumor potency against a variety of solid
cancers through its antivascular activity and remodeling of tumor vasculature.
18F-Fluoromisonidazole (
18F-FMISO) is the most widely used PET probe
A variety of techniques for measuring oxygen in normal and tumor tissue has been developed over the years in response to the realization that hypoxia is important in a number of pathophysiological conditions in normal tissues and in the response of tumors to radiation treatment. A review of the
18F-labeled fluoroazomycinarabinoside (18F-FAZA) is a PET biomarker for noninvasive identification of regional tumor hypoxia. The aim of the present phase I study was to evaluate the biodistribution and dosimetry of 18F-FAZA in non-small cell lung cancer patients. Methods: Five patients awaiting
2-Nitroimidazole-based hypoxia imaging tracers such as 18 F-FMISO are normally imaged at late time points (several hours post-injection) due to their slow clearance from background tissues. Here, we investigated if a hydrophilic zwitterion-based ammoniomethyl-trifluoroborate derivative of
Tumor hypoxia, a common feature occurring in nearly all human solid tumors is a major contributing factor for failures of anticancer therapies. Because ionizing radiation depends heavily on the presence of molecular oxygen to produce cytotoxic effect, the negative impact of tumor hypoxia had long
Interleukin-17 (IL-17) and tumor necrosis factor (TNF)-α are able to cooperatively alter the expression levels of a number of genes. In the present study, the mRNA expression levels of hypoxia-inducible factor (HIF)-1α were analyzed in MDA-MB-231 breast cancer cells following treatment with IL-17,
Hypoxia occurs in solid tumours due to a mismatch between tumour growth and angiogenesis. Hypoxia in solid tumours is associated with an aggressive phenotype and resistance to radiation therapy and chemotherapy leading to poor patient prognosis. Hypoxia-inducible factor-1 (HIF-1) is a transcription
Preclinical models in vitro and in vivo have shown that tumor hypoxia alters the malignant cell phenotype, selecting for p53 mutations, stimulating angiogenesis and metastasis, and markedly reducing the efficacy of both radiotherapy and chemotherapy. Similarly, clinical studies measuring
Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional protein, playing roles in glucose and lipid metabolism, inflammation, angiogenesis, and tumorigenesis. Recent research suggests that ANGPTL4 is induced by hypoxia and is a useful diagnostic or prognostic marker for various cancers. However,
The presence of hypoxia within a tumor is associated with poor clinical outcome, which is often exacerbated by loss of the tumor suppressor p53. In the presence of functional p53, hypoxic conditions promote apoptosis; however, the p53-dependent genes that mediate this process are not well
Our previous study demonstrated hypoxia-inducible factor-1(HIF-1) could prompt multidrug resistance (MDR) phenotype and MGr1-Ag/37LRP, a novel drug-resistance protein was reported by our labortary, associated with multidrug resistance in gastric cancer. Given this association, we hypothesized that
Solid tumors meet their demands for nascent blood vessels and increased glycolysis, to combat hypoxia, by activating multiple genes involved in angiogenesis and glucose metabolism. Hypoxia inducible factor-1 (HIF-1) is a constitutively expressed basic helix-loop-helix transcription factor, formed by
Background
Breast
cancer is the most common type of
cancer among females.
Hypoxia mediates
cancer hallmarks and results from reduced oxygen level due to irregularities in tumor vascularization or when the tumor size prevents oxygen diffusion and triggers angiogenesis to
Hypoxic tumours have the worst prognosis because they are the most aggressive and the most likely to metastasize. This may be because these aggressive cancers have a hypoxic core which generates signals that activate angiogenesis which enables the supply of nutrients and oxygen to a rapidly growing
MicroRNAs (miRNAs) are small non-coding RNA sequences which are able to modulate the expression of many functional proteins. The expression level of miRNAs can be modulated by parameters of the tumor microenvironment like hypoxia, nutrient deprivation or oxidative stress. Since miRNAs can act either