Pagina 1 a partire dal 17 risultati
Structural analysis of toluene-o-xylene monooxygenase (ToMO) hydroxylase revealed the presence of three hydrophobic cavities, a channel, and a pore leading from the protein surface to the active site. Here, saturation mutagenesis was used to investigate the catalytic roles of alpha-subunit (TouA)
The four-component toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 is capable of oxidizing arenes, alkenes, and haloalkanes at a carboxylate-bridged diiron center similar to that of soluble methane monooxygenase (sMMO). The remarkable variety of substrates accommodated by ToMO
Activated carbon has been used for the recovery and removal of benzene, toluene, and xylenes in air and water for a long time. However, removal of benzene, toluene, and xylenes from soil is very difficult. They can be removed by an increase in the apparent solubility of organic compounds in soil.
In all structurally characterized bacterial multicomponent monooxygenase (BMM) hydroxylase proteins, a series of hydrophobic cavities in the α-subunit trace a conserved path from the protein exterior to the carboxylate-bridged diiron active site. This study examines these cavities as a potential
Phenol hydroxylase (PH) belongs to a family of bacterial multicomponent monooxygenases (BMMs) with carboxylate-bridged diiron active sites. Included are toluene/o-xylene (ToMO) and soluble methane (sMMO) monooxygenase. PH hydroxylates aromatic compounds, but unlike sMMO, it cannot oxidize alkanes
For numerous enzymes reactive toward small gaseous compounds, growing evidence indicates that these substrates diffuse into active site pockets through defined pathways in the protein matrix. Toluene/o-xylene monooxygenase hydroxylase is a dioxygen-activating enzyme. Structural analysis suggests two
Two novel closed-shell hemicarcerand-like hosts with spherical cavities of 11 A diameter that are soluble in aqueous solution were constructed. The binding of xylenes, aryl ethers, polyaromatic compounds, ferrocene derivatives, and bicyclic aliphatic compounds were examined by NMR spectroscopy and
Cyclodextrin (CD) molecules are polycyclic glucose oligomers that have a hydrophilic exterior and a hydrophobic cavity. This structure provides CD the characteristic of enhancing the solubility of groundwater pollutants. The degree to which CD increases the apparent aqueous solubility of certain
The solubility and the partitioning of p- and o-xylene in aqueous solutions containing M-alpha-CD, a partially methylated alpha-cyclodextrin, and the anionic surfactant sodium dodecyl sulfate (SDS) were studied by extraction experiments to evaluate the applicability of liquid membrane permeation for
Cd(II)/Mn(II) coordination grid networks containing large meshes have been assembled from a long rigid ligand, 2,5-bis(4'-(imidazol-1-yl)benzyl)-3,4-diaza-2,4-hexadiene (ImBNN), and M(CF(3)SO(3))(2) (M = Cd and Mn) salts, and their interpenetration change upon guest inclusion has been investigated
Henry's Law constants (HLCs) of several common, subsurface hydrophobic organic pollutants (HOPs) including trichloroethylene (TCE), perchloroethylene (PCE) and benzene, toluene, ethylbenzene, and o-xylene (BTEX), were measured using a static headspace phase ratio (SHPR) method over a range of
m-Diethynylbenzene macrocycles (DBMs), buta-1,3-diyne-bridged [4(n)]metacyclophanes, have been synthesized and their self-association behaviors in solution were investigated. Cyclic tetramers, hexamers, and octamers of DBMs having exo-annular octyl, hexadecyl, and 3,6,9-trioxadecyl ester groups were
The original reaction move for the reaction ensemble Monte Carlo (RxMC) method is adapted to align both the position and orientation of inserted product molecules and deleted reactant molecules. The accuracy and efficiency of this move is demonstrated for xylene isomerization in vapor, liquid, and
Pillararenes, a recently discovered class of aromatic macrocycles, form inclusion complexes with a large number of guest molecules, but not much is known about the driving forces of complexation, including the role of the solvent. We have measured the binding thermodynamics for a small number of
The dinickel(II) complex of the face-to-face bicyclam ligand α,α'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene (L∩L) in a dimethyl sulfoxide solution exists as a mixture of high- and low-spin forms and uptakes up to three halide and pseudohalide ions (X(-)), according to stepwise