Pagina 1 a partire dal 68 risultati
This study provides a timely comparative genomic and transcriptomic analysis of the terpene synthase (TPS) gene family in Medicago truncatula (bears glandular and non-glandular trichomes) and Arabidopsis thaliana (bears non-glandular trichomes). The authors' efforts aimed to gain insight into TPS
The terpenoid pathway serves as an essential source of all isoprenoid precursors and metabolites that are of great pharmacological importance. The major enzymes for the synthesis of these diverse molecules is the terpene synthases (TPSs), which catalyse the final step of the synthesis of the
Volatile, low-molecular weight terpenoids have been implicated in plant defenses, but their direct role in resistance against microbial pathogens is not clearly defined. We have examined a possible role of terpenoid metabolism in the induced defense of Arabidopsis thaliana plants against leaf
Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and antiherbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness.
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate
Flowers are essential but vulnerable plant organs, exposed to pollinators and florivores, yet surprisingly, flower chemical defenses were rarely investigated. We show here that two clustered terpene synthase and cytochrome P450 encoding genes (TPS11 and CYP706A3) on chromosome 5 of Arabidopsis
Terpenes constitute the largest class of plant secondary (or specialized) metabolites, which are compounds of ecological function in plant defense or the attraction of beneficial organisms. Using biochemical and genetic approaches, nearly all Arabidopsis thaliana (Arabidopsis) enzymes of the core
When attacked by insects, plants release mixtures of volatile compounds that are beneficial for direct or indirect defense. Natural variation of volatile emissions frequently occurs between and within plant species, but knowledge of the underlying molecular mechanisms is limited. We investigated
UNASSIGNED
This review summarizes the recent developments in the study of isoprenyl diphosphate synthases with an emphasis on analytical techniques, product length determination, and the physiological consequences of manipulating expression in planta. The highly diverse structures of all terpenes
Isoprenoids are a highly diverse and important group of natural compounds. The enzyme 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) catalyzes a key regulatory step in the non-mevalonate isoprenoid biosynthetic pathway in eubacteria and in plant plastids. For example, in Artemisia annua DXR
CONCLUSIONS
A novel plastidial homodimeric insect-plant geranyl pyrophosphate synthase gene is synthesized from three different cDNA origins. Its overexpression in Camelina sativa effectively alters plant development and terpenoid metabolism. Geranyl pyrophosphate synthase (GPPS) converts one
The effective anti-malarial drug artemisinin (AN) isolated from Artemisia annua is relatively expensive due to the low AN content in the plant as AN is only synthesized within the glandular trichomes. Therefore, genetic engineering of A. annua is one of the most promising approaches for improving
The invasive plant Eupatorium adenophorum Spreng. (or Ageratina adenophora (Spreng.) King and Robinson) (Compositae) has caused great economic loss in China, especially the southwestern region, and is gravely threatening the native biodiversity. The aerial part of this plant was phytochemically
Arabidopsis is emerging as a model system to study the biochemistry, biological functions, and evolution of plant terpene secondary metabolism. It was previously shown that the Arabidopsis genome contains over 30 genes potentially encoding terpene synthases (TPSs). Here we report the
Previously, linalool was found to be the most abundant component among the volatile cocktails released from flowers of Freesia hybrida, which was catalyzed by a monoterpene synthase FhTPS1. However, the regulatory network developmentally modulating the expression of FhTPS1 gene remains unexplored.