Italian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

udp xylose/arabidopsis thaliana

Il collegamento viene salvato negli appunti
ArticoliTest cliniciBrevetti
Pagina 1 a partire dal 18 risultati

Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
UDP-xylose (UDP-Xyl) is a sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in plants, vertebrates, and fungi. In plants, the biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) appears to be catalyzed by numerous UDP-glucuronic acid

Probing of the reaction pathway of human UDP-xylose synthase with site-directed mutagenesis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Uridine 5'-diphosphate (UDP)-xylose (UDP-Xyl) synthase (UXS) catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-Xyl. The closely related UDP-glucuronic acid 4-epimerase (UGAE) interconverts UDP-GlcUA and UDP-galacturonic acid (UDP-GalUA) in a highly similar manner via

Molecular cloning and functional expression of beta1, 2-xylosyltransferase cDNA from Arabidopsis thaliana.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
The transfer of xylose from UDP-xylose to the core beta-linked mannose of N-linked oligosaccharides by beta1,2-xylosyltransferase (XylT) is a widespread feature of plant glycoproteins which renders them immunogenic and allergenic in man. Here, we report the isolation of the Arabidopsis thaliana XylT
The synthesis of noncellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as a substrate. We have cloned and characterized a nucleotide sugar transporter from Arabidopsis thaliana (L.) Heynh. named AtUTr2. Expression in tobacco and Saccharomyces
The synthesis of non-cellulosic polysaccharides and glycoproteins in the plant cell Golgi apparatus requires UDP-galactose as substrate. The topology of these reactions is not known, although the orientation of a plant galactosyltransferase involved in the biosynthesis of galactomannans in fenugreek
Xylan and xyloglucan are the two major cell wall hemicelluloses in plants, and their biosynthesis requires a steady supply of the sugar donor, UDP-xylose. UDP-xylose is synthesized through conversion of UDP-glucuronic acid (UDP-GlcA) by the activities of UDP-xylose synthase (UXS). There exist six

Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide
To identify candidate genes involved in Arabidopsis flavonoid biosynthesis, we applied transcriptome coexpression analysis and independent component analyses with 1388 microarray data from publicly available databases. Two glycosyltransferases, UGT79B1 and UGT84A2 were found to cluster with
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a

Quantitative HPLC-MS analysis of nucleotide sugars in plant cells following off-line SPE sample preparation.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
An analytical workflow was developed for the absolute quantification of uridine diphosphate (UDP)-sugars in plant material in order to compare their metabolism both in wild-type Arabidopsis thaliana and mutated plants (ugd2,3) possessing genetic alterations within the UDP-glucose dehydrogenase genes
Plants produce two flavonoid O-pentoses, flavonoid O-xyloside and flavonoid O-arabinoside. However, analyzing their biological properties is difficult because flavonoids are not naturally produced in sufficient quantities. In this study, Escherichia coli was used to synthesize the plant-specific
UDP-glucuronate decarboxylase (UDP-xylose synthase; UXS, EC 4.1.1.35) is an essential enzyme of the non-cellulosic polysaccharide biosynthetic pathway. In the present study, using transient expression of fluorescently labeled Gossypium hirsutum UXS (GhUXS3) protein in onion epidermal cells, we
Flavonoids, which comprise a large family of secondary plant metabolites, have received increased attention in recent years due to their wide range of features beneficial to human health. One of the most abundant flavonoid skeletons in citrus species is the flavanone naringenin, which is accumulated

Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose.

Solo gli utenti registrati possono tradurre articoli
Entra registrati
Xyloglucan (XyG) is the principal hemicellulose found in the primary cell walls of most plants. XyG is composed of a beta-(1,4)-glucan backbone that is substituted in a regular pattern with xylosyl residues, which are added by at least one and likely two or three xylosyltransferase (XT) enzymes.
Using a functional genomics approach, four candidate genes (PtGT34A, PtGT34B, PtGT34C and PtGT34D) were identified in Pinus taeda. These genes encode CAZy family GT34 glycosyltransferases that are involved in the synthesis of cell-wall xyloglucans and heteromannans. The full-length coding sequences
Unisciti alla nostra
pagina facebook

Il database di erbe medicinali più completo supportato dalla scienza

  • Funziona in 55 lingue
  • Cure a base di erbe sostenute dalla scienza
  • Riconoscimento delle erbe per immagine
  • Mappa GPS interattiva - tagga le erbe sul luogo (disponibile a breve)
  • Leggi le pubblicazioni scientifiche relative alla tua ricerca
  • Cerca le erbe medicinali in base ai loro effetti
  • Organizza i tuoi interessi e tieniti aggiornato sulle notizie di ricerca, sperimentazioni cliniche e brevetti

Digita un sintomo o una malattia e leggi le erbe che potrebbero aiutare, digita un'erba e osserva le malattie ei sintomi contro cui è usata.
* Tutte le informazioni si basano su ricerche scientifiche pubblicate

Google Play badgeApp Store badge