10 תוצאות
OBJECTIVE
Magnesium (Mg) deficiency has been reported to be associated with the development of the metabolic syndrome, cardiovascular diseases, and sudden death. We examined the influence of chronic Mg deficiency on cardiac tolerance to hypoxia/reoxygenation injury.
METHODS
Mice were fed an
Objective: To explore the effect of chronic intermittent hypoxia (CIH) on rats hepatic function, and the protective mechanism of adiponectin (Ad). Methods: Sixty healthy male wistar rats were randomly divided into 4 groups: normal control (NC), NC+ Ad, CIH, and CIH+ Ad groups with 15 rats in each.
OBJECTIVE
Inactivation of Kupffer cells prevents alcohol-induced liver injury, and hypoxia subsequent to a hypermetabolic state caused by activated Kupffer cells probably is involved in the mechanism. Glycine is known to prevent hepatic reperfusion injury. The purpose of this study was to determine
Patients with sickle cell anemia exhibit mild to moderate renal and liver damage. Glutathione S-transferase A1-1 is produced during kidney and liver damage. We hypothesized that cellular damage in sickle transgenic mice would lead to increased serum and urine murine glutathione S-transferase A1-1
Amino acid catabolism, the tricarboxylic acid cycle intermediates and ammonia formation were studied in isolated perfused rat heart under anoxia. The total net anaplerosis due to amino acid degradation in anoxia was equal to that in oxygenation (6.29 and 6.09 mumol/g dry weight per h, respectively)
Dynamic measurements in the cerebrospinal fluid (CSF) of the activities of lactate dehydrogenase (LDH), its first isoenzyme (LDH1), aspartate amino transferase (AsAT), alanine amino transferase (AlAT), creatine phosphokinase (CPK), gamma-glutamyl transpeptidase (GGT) and alkaline phosphatases (ALP)
Hepatic ischemia-reperfusion (IR) injury is characterized by severe inflammation and cell death. However, very few effective therapies are presently available for hepatic IR injury treatment. Here, we reported a protective function and the underlying mechanism of myotubularin-related protein 14
OBJECTIVE
Hepatic ischemia/reperfusion (I/R) injury is characterized by anoxic cell injury and the generation of inflammatory mediators, leading to hepatic parenchymal cell death. The activation of interferon regulatory factors (IRFs) has been implicated in hepatic I/R injury, but the role of IRF9
The purpose of this study was to explore the associated mechanism by which MSCs-derived exosomes exerted protective effect in hepatic ischemia/reperfusion injury (IRI). Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs)-derived exosomes were administrated into LO2 cells exposed to
Previous studies have proved that activation of aldehyde dehydrogenase two (ALDH2) can attenuate oxidative stress through clearance of cytotoxic aldehydes, and can protect against cardiac, cerebral, and lung ischemia/reperfusion (I/R) injuries. In this study, we investigated the effects of the ALDH2