8 תוצאות
BACKGROUND
The N. attenuata HD20 gene belongs to the homeodomain-leucine zipper (HD-Zip) type I family of transcription factors and it has been previously associated with the regulation of ABA accumulation in leaves and the emission of benzyl acetone (BA; 4-phenyl-2-butanone) from night flowers. In
After herbivore attack, plants launch a suite of direct and indirect defense responses that must be coordinated if plants are to realize a fitness benefit from these responses. Here we characterize the volatile emissions in the native tobacco plant, Nicotiana attenuata Torr. ex Wats., that are
The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the
Many plants emit diverse floral scents that mediate plant-environment interactions and attain reproductive success. However, how plants evolve biosynthesis of novel and adaptive floral volatiles remains unclear. Here, we show that in the wild tobacco, Nicotiana attenuata, a dominant species-specific
The morphological and chemical characteristics of flowers which attract pollinators present a dilemma for plants; advertising may increase the "apparency" of plants to their predators and some pollinators are also predators. We explore how a self-compatible disturbance species,Nicotiana attenuata,
Flowers are required for the Darwinian fitness of flowering plants, but flowers' advertisements for pollination services can attract florivores. Previous glasshouse work with Nicotiana attenuata revealed the role of jasmonate (JA) signaling in flower development, advertisement and defense. However,
All animal-pollinated plants must solve the problem of attracting pollinators while remaining inconspicuous to herbivores, a dilemma exacerbated when voracious larval-stage herbivores mature into important pollinators for a plant [1]. Herbivory is known to alter pollination rates, by altering flower
Plants use many means to attract pollinators, including visual cues and odor. We investigated how nonpigment floral chemistry influences nectar removal, floral visitation, florivory, rates of outcrossing, and fitness through both male and female functions. We blocked expression of biosynthetic genes