5 תוצאות
The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this
Adaptation of a xylose-utilizing genetically engineered strain of Saccharomyces cerevisiae to sugarcane bagasse hydrolysates by cultivation during 353h using medium with increasing concentrations of inhibitors, including phenolic compounds, furaldehydes and aliphatic acids, led to improved
Renewable and low-cost lignocellulosic wastes have attractive applications in bioethanol production. The yeast Saccharomyces cerevisiae is the most widely used ethanol-producing microbe; however, its fermentation temperature (30-35°C) is not optimum (40-50°C) for enzymatic hydrolysis in the
BACKGROUND
Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance.
RESULTS
Grape marc was selected
BACKGROUND
The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has