עמוד 1 מ 37 תוצאות
Arabidopsis thaliana contains two GDP-L-galactose phosphorylase genes, VTC2 and VTC5, which are critical for ascorbate (AsA) biosynthesis. We investigated the expression levels of both VTC2 and VTC5 genes in wild-type A. thaliana and the AsA deficient mutants during early seedling growth. Ascorbate
l-Galactose (l-Gal) is one of the components of plant cell wall polysaccharides. In the GDP-l-fucose-deficient Arabidopsis thaliana mutant mur1, l-fucose (l-Fuc) residues in xyloglucan are substituted by l-Gal residues. l-Gal only differs from l-Fuc by the presence of an oxygen at C-6. Thus, we
l-Galactose dehydrogenase (l-GalDH), a novel enzyme that oxidizes l-Gal to l-galactono-1,4-lactone (l-GalL), has been purified from pea seedlings and cloned from Arabidopsis thaliana. l-GalL is a proposed substrate for ascorbate biosynthesis in plants, therefore the function of l-GalDH in ascorbate
In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-D-mannose (GDP-D-Man), GDP-L-galactose (GDP-L-Gal), and L-galactose. However, the steps involved in the synthesis of L-Gal from GDP-L-Gal in planta are not fully characterized. Here we present evidence for an in vivo
Plants synthesize ascorbate from guanosine diphosphate (GDP)-mannose via L-galactose/L-gulose, although uronic acids have also been proposed as precursors. Genes encoding all the enzymes of the GDP-mannose pathway have previously been identified, with the exception of the step that converts
l-Galactose (l-Gal) containing N-glycans and cell wall polysaccharides have been detected in the l-Fuc deficient mur1 mutant of Arabidopsis thaliana. The l-Gal residue is thought to be transferred from GDP-l-Gal, which is a structurally related analog of GDP-l-Fuc, but in vitrol-galactosylation
A simple, rapid, and quantitative high-pressure liquid chromatography radio method is described for the determination of in vivo (14)C-labeled l-ascorbate, dehydro-l-ascorbate, and total l-ascorbate of Arabidopsis thaliana cell suspensions upon incubation of cultures with exogenous d-[(14)C]mannose.
Unraveling the role of genes annotated as protein of unknown function is of importance in progression of plant science. l-Galactono-1,4-lactone (l-GalL) is the terminal precursor for ascorbic acid (AsA) biosynthesis in Arabidopsis thaliana, and a previous study showed two DUF (domains of unknown
Ascorbic acid (AA) is a major redox buffer in plant cells. The role of ethylene in the redox signaling pathways that influence photosynthesis and growth was explored in two independent AA deficient Arabidopsis thaliana mutants (vtc2-1 and vtc2-4). Both mutants, which are defective in the AA
An Arabidopsis thaliana mutant (mur1) has less than 2 percent of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant. The survival of mur1 plants challenged the hypothesis that fucose is a required component of biologically active oligosaccharides derived from
Ascorbic acid (AsA) biosynthesis in plants occurs through a complex, interconnected network with mannose (Man), myoinositol, and galacturonic acid as principal entry points. Regulation within and between pathways in the network is largely uncharacterized. A gene that regulates the Man/l-galactose
Arabidopsis thaliana mur1 is a dwarf mutant with altered cell-wall properties, in which l-fucose is partially replaced by l-galactose in the xyloglucan and glycoproteins. We found that the mur1 mutation also affects the primary structure of the pectic polysaccharide rhamnogalacturonan II (RG-II). In
The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L-galactose phosphorylases converting GDP-L-galactose to L-galactose-1-P, thus catalyzing the first
Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted
Ascorbate is a critical compound in plants and animals. Humans are unable to synthesize ascorbate, and their main source of this essential vitamin are plants. However, the pathway of synthesis in plants is yet to be established, and several unknown enzymes are only postulated to exist. We describe a