עמוד 1 מ 65 תוצאות
Sclerotinia sclerotiorum releases a battery of polygalacturonases (PGs) during infection, which the host plant may cope with through production of polygalacturonase inhibitor proteins (PGIPs). To study the interaction between S. sclerotiorum PGs and Brassica napus PGIPs, 5 S. sclerotiorum PGs and 4
Studies in zucchini (Cucurbita pepo L. spp. pepo) pollen have been limited to the viability and morphology of the mature pollen grain. The enzyme polygalacturonase (PG) is involved in pollen development and pollination in many species. In this work, we study anther and pollen development of C. pepo
Plant polygalacturonases (PGs) are closely related to cell-separation events during plant growth and development by degrading pectin. Identifying and investigating their diversification of evolution and expression could shed light on research on their function. We conducted sequence, molecular
CONCLUSIONS
BoMF25 acts on pollen wall. Polygalacturonase (PG) is a pectin-digesting enzyme involved in numerous plant developmental processes and is described to be of critical importance for pollen wall development. In the present study, a PG gene, BoMF25, was isolated from Brassica oleracea.
During zygotic embryogenesis of turnip-tops (Brassica rapa L. cv. Rapa), the polygalacturonase activity (PG; EC 3.2.1.15), measured as a decrease in viscosity of polygalacturonic acid, reached a high when the desiccation process in the seeded silique was triggered and the valves had lost more than
By systematic sequencing of a flower bud cDNA library from Arabidopsis thaliana, we have identified four cDNAs encoding polygalacturonase. The corresponding genes, together with seven other A. thaliana genes present in the databases, form a small gene family. Sequence comparisons of the deduced
Pectin, as one of the major components of plant cell wall, has been implicated in many developmental processes occurring during plant growth. Among the different enzymes known to participate in the pectin structure modifications, polygalacturonase (PG) activity has been shown to be associated with
There is considerable interest in engineering plant cell wall components, particularly lignin, to improve forage quality and biomass properties for processing to fuels and bioproducts. However, modifying lignin content and/or composition in transgenic plants through down-regulation of lignin
Polygalacturonases (PGs) hydrolyze the homogalacturonan of plant cell-wall pectin and are important virulence factors of several phytopathogenic fungi. In response to abiotic and biotic stress, plants accumulate PG-inhibiting proteins (PGIPs) that reduce the activity of fungal PGs. In Arabidopsis
Polygalacturonases (PGs), enzymes that hydrolyze the homogalacturonan of the plant cell wall, are virulence factors of several phytopathogenic fungi and bacteria. On the other hand, PGs may activate defense responses by releasing oligogalacturonides (OGs) perceived by the plant cell as
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most important diseases of wheat worldwide, resulting in yield losses and mycotoxin contamination. The molecular mechanisms regulating Fusarium penetration and infection are poorly understood. Beside mycotoxin production, cell
Polygalacturonases (PGs) have been proposed to play an important role in the process of cell separation. The Arabidopsis thaliana genome contains 69 annotated genes that by amino acid homology and transcript organization could be classified as putative PGs and these can be grouped into multiple
The oilseed rape (Brassica napus) endo-polygalacturonase (endo-PG) RDPG1 is involved in middle lamella breakdown during silique opening. We investigated tissue-specific expression of RDPG1 in transgenic Arabidopsis thaliana. Cellular localization of endo-PG protein in Arabidopsis siliques was
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by
Plant cell separation and expansion require pectin degradation by endogenous pectinases such as polygalacturonases, few of which have been functionally characterized. Stomata are a unique system to study both processes because stomatal maturation involves limited separation between sister guard