Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Remifentanil Use in Pediatric Rigid Bronchoscopy

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
状態完了
スポンサー
Bezmialem Vakif University

キーワード

概要

Purpose: In this study we wanted to compare bolus propofol and ketamine as an adjuvant to remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy.
Materials and Methods: Forty children under 12 years of age scheduled for rigid bronchoscopy were included. After midazolam premedication, remifentanil infusion 1 µg/kg/min was started and patients were randomly allocated to receive either propofol (Group P) or ketamine (Group K) and mivacurium for muscle relaxation. Anesthesia was maintained with remifentanil infusion 1 µg/kg/min and bolus doses of propofol or ketamine. After rigid bronchoscopy remifentanil 0.05 µg/kg/min was maintained until extubation. Hemodynamic parameters, emergence characteristics and adverse events were evaluated.

説明

After approval by Institutional Ethics Committee and obtaining informed consent of parents, 40 consecutive children under 12 years who were scheduled to have RB for diagnostic (suspected foreign body aspiration, bronchoalveolar lavage) and/or therapeutic purposes (removal of foreign bodies and/or mucus plugs) were included.

Fasting time before induction of anesthesia was at least 6 hours for solid food and 4 hours for clear liquids. Before admission to the preoperative holding area, a local anesthetic cream was applied to the insertion site and IV catheterization was performed. Midazolam (0.05 mg/kg) was given intravenously just before admission to the operating room. Pulse oximetry (SpO2), ECG and non-invasive blood pressure were monitored. Before induction all children were pre-oxygenated and a crystalloid infusion 10 mg/kg/h was started. Children were randomly allocated to one of two groups according to sealed envelopes. After a second dose of IV midazolam 0.05 mg/kg, remifentanil infusion 1 µg/kg/min was started. During the 1st minute of remifentanil infusion, propofol 2-4 mg/kg, including lidocaine 1 mg/mL for injection pain (Group P) or ketamine 2-3 mg/kg (Group K) was administered. When adequate mask ventilation was ensured, mivacurium 0.15 mg/kg was administered for muscle relaxation and RB was begun at the 4-5th minute of remifentanil infusion. Depth of anesthesia was assessed clinically by hemodynamic parameters (heart rate, blood pressure), movement, coughing, bucking, lacrimation and sweating. Additional doses of propofol (0.5-1 mg/kg) or ketamine (0.25-0.5 mg/kg), with or without mivacurium (0.025-0.05 mg/kg, according to the course of bronchoscopy) were given when inadequate depth of anesthesia was considered. Remifentanil infusion 1 µg/kg/min was maintained throughout the procedure.

Patients were manually ventilated with a 'T' piece connected to the side arm of the rigid bronchoscope. The fresh gas flow was adjusted to 6-10 L/min. In case of major air leakage, oxygen flush valve was used for adequate filling of the reservoir bag while airway pressure limit was adjusted to 20-30 cmH2O.

After bronchoscopy, endotracheal intubation was performed, manually controlled or assisted ventilation with 4-8 cmH2O PEEP and 50% oxygen in air was performed. Tracheal and oral secretions were suctioned as needed and the patients were turned to the lateral decubitus position for recovery. After being placed in the recovery position, no further stimulation was allowed except gentle suctioning of oral secretions and for a smooth extubation remifentanil infusion was decreased to 0.05 µg/kg/min and continued until just before extubation. When patients began to demonstrate emergence from anesthesia by displaying a regular respiratory pattern, facial grimacing or purposeful movement, trachea was extubated. In cases of breath-holding and arterial oxygen desaturation, assisted or controlled mask ventilation was performed. Pure oxygen was administered via the mask in order to maintain SpO2 above 94%.

Noninvasive blood pressure was measured before induction as a baseline value, after induction (just before laryngoscopy) and in 3 minutes of interval during rigid bronchoscopy. Hypotension was defined as a systolic blood pressure lower than 60 mmHg for children under 2 years and 70 mmHg for children 2-12 years old. Hypotension was treated with an increase in IV crystalloid infusion and two consecutive measures of hypotension treated with ephedrine and a decrease in remifentanil infusion. Bradycardia was defined as a heart rate slower than 80 beats/min for infants and 60 beats/min for older children (11) and treated with atropine 0.01 mg/kg.

SpO2 values below 90% were defined as hypoxemia. The severity of hypoxemia was graded as mild (SpO2: 80-89%), moderate (SpO2: 70-79%) or severe (SpO2<70%). Coughing or respiratory effort (diaphragm movement) and limb movement during laryngoscopy and rigid bronchoscopy was graded as mild (minor movement that does not effect surgical comfort), moderate (effect surgical comfort) or severe (the bronchoscope has to be removed or any complication) by the endoscopist. Postoperative severe restlessness and disorientation with purposeless activity were defined as emergence agitation. All adverse events were recorded by an independent observer.

A pilot study was performed with the technique used for the Group P. Power analysis showed that a minimum sample size of 40 patients (20 in each group) was required to detect a 20% change in arterial pressures at a power level of 90% with p<0.05. Categorical variables and hemodynamic parameters were analyzed using Mann-Whitney U Test and repeated-measures Anova respectively. Comparison of the incidence of the outcomes between the two groups was analyzed by a two-tailed Fisher's exact test. Statistical significance was defined as p<0.05.

日付

最終確認済み: 08/31/2013
最初に提出された: 09/03/2013
提出された推定登録数: 09/16/2013
最初の投稿: 09/19/2013
最終更新が送信されました: 09/16/2013
最終更新日: 09/19/2013
実際の研究開始日: 10/31/2005
一次完了予定日: 07/31/2006
研究完了予定日: 07/31/2006

状態または病気

Pediatric Rigid Bronchoscopy

介入/治療

Drug: Group Propofol

Drug: Group Ketamine

Drug: Remifentanil

段階

段階 4

アームグループ

介入/治療
Active Comparator: Group Propofol
Drug: Group Propofol
Active Comparator: Group Ketamine
Drug: Group Ketamine

適格基準

研究の対象となる年齢 1 Month に 1 Month
研究に適格な性別All
健康なボランティアを受け入れるはい
基準

Inclusion Criteria:

- Children who were scheduled to have rigid bronchoscopy for diagnostic purposes (suspected foreign body aspiration, bronchoalveolar lavage)

- Children who were scheduled to have rigid bronchoscopy for therapeutic purposes (removal of foreign bodies and/or mucus plugs)

Exclusion Criteria:

- Severe cardiovascular disease

- Cerebral, hepatic or renal dysfunction

- Neuromuscular disease

- Children with predicted difficulty in laryngoscopy and intubation

- Patients requiring prompt interventions for a life-threatening situation (acutely compromised airway with SpO2 values below 70%)

- Patients scheduled for additional interventions or surgery subsequent to rigid bronchoscopy

結果

主な結果の測定

1. Change in systolic arterial pressure [Systolic arterial pressure was assessed before anesthesia induction (baseline), 2 minutes after anesthesia induction, at 1., 3., 6., 9., 12., and 15. minutes of rigid bronchoscopy.]

Noninvasive systolic blood pressure was measured with 3 minutes of interval during rigid bronchoscopy. The duration of rigid bronchoscopy was 10-15 minutes.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge