Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Guava seed (Psidium guajava) nanoparticles as antibacterial agent

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Hatem Ali
Reem Alajmi
Hany Yehia
Mohamed El-Din
Manal Elkhadragy
Manal Awad
Dina Hasanin

キーワード

特許情報

特許番号10206417
提出06/06/2018
特許の日付02/18/2019

概要

The guava seed (Psidium guajava) nanoparticles as an antibacterial agent are prepared from guava seeds that have been washed, dried, and ground to powder of less than 1 mm diameter. The powder is reduced to nanoparticle size (less than 100 nm diameter) by adding the powder to a solution of concentrated hydrochloric acid (38% w/w) and stirring the mixture at 3000 rpm at room temperature. The resulting nanoparticles are filtered through a Millipore membrane filter and dried. Agar well diffusion studies showed significant antibacterial activity against various Gram positive and negative species commonly implicated in food contamination. Further testing showed the guava seed nanoparticles have significant antioxidant and radical scavenging content, suggesting that guava seed nanoparticles may serve as an antibacterial agent.

請求

We claim:

1. A method of making antibacterial guava seed nanoparticles, comprising the steps of: grinding guava (Psidium guajava) seeds to form a guava seed powder; adding the guava seed powder to 30 ml of methanol and 1-3 ml of concentrated hydrochloric acid to form a mixture, wherein the concentrated hydrochloric acid is 38% HCl:water w/w; stirring the mixture of guava seed powder and concentrated hydrochloric acid to form guava seed nanoparticles, wherein the stirring is at 3000 rpm at about 30.degree. C. for one hour; adding 20 ml of distilled water to the stirred mixture and subsequently continuing the stirring for two hours; centrifuging the nanoparticles at 9000 rpm for 15 minutes; and filtering and drying the guava seed nanoparticles, wherein the guava seed nanoparticles have an average diameter less than 100 nm.

2. The method of making guava seed nanoparticles according to claim 1, wherein said step of grinding guava (Psidium guajava) seeds further comprises filtering the ground guava seeds through a sieve having a pore size of 0.355 mm to obtain the guava seed powder.

3. Guava (Psidium guajava) seed nanoparticles made according to the method of claim 1.

4. A method of preventing bacterial contamination of food, comprising the step of treating the food with guava seed nanoparticles made according to the method of claim 1.

5. A method of preventing bacterial contamination of food, comprising the step of packaging the food in packaging incorporating guava seed nanoparticles made according to the method of claim 1.

説明

BACKGROUND

1. Field

The disclosure of the present patent application relates to nanotechnology, and particularly to guava seed (Psidium guajava) nanoparticles as an antibacterial agent.

2. Description of the Related Art

Nanoscience is one of the most important research and development frontiers in modern science. In recent years, nanotechnology research is emerging as a cutting edge technology spanning the disciplines of physics, chemistry, biology, material science, and medicine.

Guava (Psidium guajava) seeds are considered to be a solid waste produced in great quantities by agricultural and industrial activities in various parts of Mexico. Guava seeds are composed of compounds with structural properties that make them suitable for use as biosorbents. The high content of cellulose, lignin, and protein, for example, make the components particularly useful for anionic contaminants that may otherwise be present in water. Guava seeds have been used as a biosorbent for removal of Cr(VI) from aqueous solutions, presenting acceptable sorption capacity. It would be desirable to find additional uses for guava seeds, which otherwise present a waste disposal problem.

Thus, guava seed (Psidium guajava) nanoparticles as an antibacterial agent solving the aforementioned problems is desired.

SUMMARY

The guava seed (Psidium guajava) nanoparticles as an antibacterial agent are prepared from guava seeds that have been washed, dried, and ground to powder of less than 1 mm diameter. The powder is reduced to nanoparticle size (less than 100 nm diameter) by adding the powder to a solution of concentrated hydrochloric acid (38% w/w) and stirring the mixture at 3000 rpm at room temperature. The resulting nanoparticles are filtered and dried. Agar well diffusion studies showed significant antibacterial activity against various Gram positive and negative species commonly implicated in food contamination. Further testing showed the guava seed nanoparticles have significant antioxidant and radical scavenging content, suggesting that guava seed nanoparticles may serve as an antibacterial agent.

These and other features of the present disclosure will become readily apparent upon further review of the following specification and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a transmission electron microscopy (TEM) micrograph of the guava seed nanoparticles, size 14-45 nm, at 150,000.times. magnification.

FIG. 1B is a TEM micrograph of the guava seed nanoparticles, size 14-45 nm, at 200,000.times. magnification.

Similar reference characters denote corresponding features consistently throughout the attached drawings.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The guava seed (Psidium guajava) nanoparticles as an antibacterial agent are prepared from guava seeds that have been washed, dried, and ground to powder of less than 1 mm diameter. The powder is reduced to nanoparticle size (less than 100 nm diameter) by adding the powder to a solution of concentrated hydrochloric acid (38% w/w) and stirring the mixture at 3000 rpm at room temperature. The resulting nanoparticles are filtered and dried. Agar well diffusion studies showed significant antibacterial activity against various Gram positive and negative species commonly implicated in food contamination. Further testing showed the guava seed nanoparticles have significant antioxidant and radical scavenging content, suggesting that guava seed nanoparticles may serve as an antibacterial agent.

The guava seed (Psidium guajava) nanoparticles as an antibacterial agent will be better understood by reference to the following working examples.

Example 1

Guava Seed Preparation

Guava seeds were obtained from local markets in Riyadh, Saudi Arabia. The seeds were washed with distilled water, and then dried at 60.degree. C. for 12 hours. The seeds were then ground. Ground seed particles of the desired size were separated using a sieve of 0.355 mm (U.S.A Standard Sieve--ASTM-E 11) and kept in a closed container. These ground seeds were used and are referred to herein as the "normal" ground guava seeds, or were further processed as described below to prepare the guava seed nanoparticles.

Example 2

Preparation of Guava Seed Nanoparticles in Detail

1 gram of the normal guava seed powder from the above was weighed out and added to 30 ml of methanol and 1-3 ml of 38% hydrochloric acid and was kept under stirring at a speed of 3000 rpm at 30.+-.2.degree. C. for one hour, and then 20 ml of distilled water was added with continuous stirring for an additional 2 hours. The nanoparticles were centrifuged (9000 rpm) for 15 minutes, filtered (to collect the nanoparticles) and dried. The resulting nanoparticles were characterized by transmission electron microscopy (JEM-1011, JEOL, Japan), as shown in FIGS. 1A and 1B. The size of the nanoparticles was analyzed through Zetasizer Nano series, HT Laser, ZEN3600 (Malvern Instrument, UK).

Example 3

Antimicrobial Testing

The nanoparticles prepared according to Example 2 were tested for antibacterial or antimicrobial activity against the following strains: Bacillus cereus ATCC 14579; Bacillus subtilis spizizenii ATCC 6633; Bacillus subtilis (local isolate); Klebsiella pneumoniae ATCC 10031; Listeria monocytogenes ATCC 19114; Staphylococcus aureus ATCC 29737; Staphylococcus aureus (MRSA), (local isolate); Proteus sp. (local isolate); Pseudomonas sp. (local isolate); Serratia marcescens (local isolate); Salmonella typhimurium ATCC 14028; Salmonella infantis ATCC 14028; and Escherichia coli ATCC 10536.

The agar diffusion method was used to determine the antibacterial activity of the guava nanoparticles against the foodborne and contamination bacteria listed above. The bacterial strains were grown on Brain Heart Infusion Agar (Oxoid.TM. CM 1136) for 24 hours, at 37.degree. C. One hundred microliters, at a concentration of 10.sup.6/ml of each active bacterial strain was spread on the surface of Muller Hinton agar plates (Oxoid CM 0337).

100 mg/ml of guava nanoparticles, and "normal" guava seed particles, were dissolved separately in sterilized water, and left overnight in the refrigerator. Then, three holes were made in each agar plate, using a sterile cork borer with a diameter of 6 mm to punch the holes in the agar. In each agar plate, 50 .mu.L was introduced separately into each hole, as follows: the guava nanoparticle solution (Gn); or normal guava dissolved in water (G) as control; or plain water (C). Then, the agar plates were incubated at 37.degree. C., for 24 hours. Zones of inhibition were measured and compared for each test preparation (Gn, G, or C) vs. each bacterial strain tested.

The data in Table 1 demonstrate the effect of the guava nanoparticles and normal guava on the various bacteria tested. The guava nanoparticles were generally more effective on both Gram positive and Gram negative bacteria than the normal guava, which only demonstrated efficacy against one bacterial strain. However, two of the Gram negative bacteria tested, i.e., Escherichia coli ATCC10536 and Pseudomonas sp. (local isolate), were apparently not affected by either of the two guava solutions. The effective ratio was 84.61% for the nanoparticles, and 7.69% for the normal guava particles. See Table 1.

TABLE-US-00001 TABLE 1 Antimicrobial testing Zone of inhibition (in mm) Guava Normal seed guava nano- seed Microorganism particles particles Bacillus cereus ATCC 14579 15 -- (Gram +) Bacillus subtilis spizizenii 25 -- ATCC 6633 (Gram +) Bacillus subtilis (local isolate) 22 8 (Gram +) Klebsiella pneumoniae 15 -- ATCC 10031 (Gram -) Listeria monocytogenes 25 -- ATCC 19114 (Gram +) Staphylococcus aureus 20 -- ATCC 29737 (Gram +) Staphylococcus aureus (MRSA), 25 -- (local isolate) Gram +) Proteus sp., (local isolate) (Gram -) 25 -- Pseudomonas sp. (local isolate) -- -- (Gram -) Serratia marcescens (local isolate) 15 -- (Gram -) Salmonella typhimurium ATCC 14028 12 (Gram -) Salmonella infantis 12 -- ATCC 14028 (Gram -) E. coli ATCC 10536 (Gram -) -- -- Effective ratio 84.61 7.69

Example 4

Preparation of Methanol Extracts

Methanolic extracts of nanoparticles and normal particles of guava seed were prepared as follows. 400 mg of ground seed or of nanoparticles were added to 50 ml methanol. The mixture was left on a shaker for 24 hours, and then centrifuged at 10,000 rpm for 15 minutes. The supernatant was filtered using Whatman.TM. filter papers, grade 41. The supernatant was adjusted to 50 ml, and stored at -20.degree. C. for up to one week for use.

Example 5

Testing for Total Phenolic Compounds

The total phenolic compound content in a methanol extract of the guava seed nanoparticle was determined by the Folin-Ciocalteu method. 2.5 ml of distilled water and 0.1 ml of a sample extract were added to a test tube, followed by the addition of 0.1 ml of undiluted, commercially available Folin-Ciocalteu reagent (Sigma-Aldrich, St. Louis, Mo., USA). The solution was mixed well, and allowed to stand for 6 minutes before 0.5 ml of 20% sodium carbonate solution was added. The color was developed for 30 minutes at room temperature (20.degree. C.), and the absorbance was measured at 760 nm using a spectrophotometer (Milton Roy Spectronic 1201, USA). A blank sample was prepared using 0.1 ml of methanol instead of the methanol extract. The measurement was compared to a calibration curve of gallic acid solutions, and expressed as gallic acid equivalents per gram of dry weight sample.

The results are reported in Table 2. Total phenols was equivalent to about 197.5 mg gallic acid/gram of sample for the nanoparticles, compared to 152 mg gallic acid/gram of sample for the normal particles.

TABLE-US-00002 TABLE 2 Methanol extracts - content of phenolic compounds and flavonoids T. Phenols T. Flavonoids T. Flavonoids (mg Gallic acid/g (mg Catechin/g (mg Rutin/g sample) sample) sample) Methanolic Extract M .+-. SD M .+-. SD M .+-. SD Guava nanoparticles 197.5 .+-. 2.393 1.996 .+-. 0.041 13.528 .+-. 0.457 Guava particles 151.962 .+-. 2.763 1.664 .+-. 0.048 11.274 .+-. 0.528 Values are means of three replications, .+-. standard deviation.

Example 6

Testing for Flavonoid Content

The total flavonoid content of a methanol extract of the guava seed nanoparticles was determined by the aluminum chloride colorimetric method. 50 .mu.L of methanol extract was mixed with 4 mL of distilled water and then 0.3 mL of 5% NaNO.sub.2 solution. After incubation for 5 minutes, 0.3 mL of 10% AlCl.sub.3 solution was added, and the mixture was allowed to stand for 6 minutes. Then, 2 mL of 1M NaOH solution was added, and distilled water was added to bring the final volume of the mixture to 10 mL. The mixture was allowed to stand for 15 minutes, and absorbance was measured at 510 nm. The total flavonoid content was calculated from a calibration curve, and the result was expressed as mg rutin equivalent per g dry weight, and as mg catechin equivalent per g dry weight.

The results are reported in Table 2. Total flavonoids for the guava nanoparticles was equivalent to about 2 mg catechin/g sample, or about 13.5 mg rutin/g sample, compared to 1.7 mg catechin, and 11.2 mg rutin, per gram of sample for the normal guava particles.

Example 7

DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity

Each sample was tested for the ability to scavenge DPPH radical. A 0.08 mM DPPH radical solution in methanol was prepared. 950 .mu.L of the DPPH stock solution was added to 50 .mu.L of the guava seed nanoparticle extract, and the mixture was incubated for 5 minutes. Exactly 5 minutes later, absorbance readings were performed on the mixture at 515 nm (Cary 50 Scan; Varian). Antioxidant activity (AA) was expressed as the percentage inhibition of DPPH radical by using this equation: AA=100-[100.times.(A sample/A control)] where A sample is the absorbance of the sample at t=5 min, and A control is the absorbance of the control.

The results are reported in Table 3. The nanoparticles exhibited 97.5% inhibition of DPPH radical, compared to about 91% inhibition by the normal guava particles.

TABLE-US-00003 TABLE 3 Methanolic extracts - free-radical scavenging and antioxidant power ABTS FRAP DPPH (mmol Trolox/g (mmol Trolox/g (%) sample) sample) Methanolic Extract M .+-. SD M .+-. SD M .+-. SD Guava nanoparticles 97.5 .+-. 0.281 22.473 .+-. 0.194 11.773 .+-. 0.082 Guava particles 90.93 .+-. 0.273 16.647 .+-. 0.344 9.650 .+-. 0.053 Values are means of three replications, .+-. standard deviation.

Example 8

ABTS (2,4,6-Tri(2-Pyridyl)-s-triazine) radical scavenging activity

The ABTS assay used was determined according to the method of Gouveia and Castilho (2011). The ABTS radical solution was prepared by reacting 50 mL of 2 mM ABTS solution with 200 .mu.L of 70 mM potassium persulfate solution. This mixture was stored in the dark for 16 hours at room temperature, and it was stable in this form for two days. For each analysis, the ABTS solution was diluted with pH 7.4 phosphate buffered saline (PBS) solution to an initial absorbance of 0.700.+-.0.021, at 734 nm.

This solution was newly prepared for each set of analyses. To determine the antiradical scavenging activity, an aliquot of 100 .mu.L methanolic solution was added to 1.8 mL of ABTS solution, and the absorbance decrease at 734 nm was recorded during the next 6 minutes. Results were expressed as .mu.mol Trolox equivalent per g of dried sample (mmol eq. Trolox/g), based on the Trolox calibration curve.

The results are reported in Table 3. The nanoparticles exhibited the equivalent of about 22.5 mmol Trolox per gram of dried sample, compared to about 16.5 mmol for the normal guava particles.

Example 9

Ferric Reducing Antioxidant Power (FRAP)

The ferric reducing antioxidant power (FRAP) was measured. The FRAP reagent included 300 mM acetate buffer at pH 3.6; 10 mM TPTZ in 40 mM HCl; and 20 mM FeCl.sub.3 in the ratio 10:1:1 (v/v/v). Three ml of the FRAP reagent was mixed with 100 .mu.L of the sample extract in a test tube, and vortexed in the incubator at 37.degree. C. for 30 minutes in a water bath. Reduction of ferric-tripyridyltriazine to the ferrous complex formed an intense blue color, which was measured on a UV-vis spectrophotometer (Varian Cary 50) at 593 nm after 4 minutes. Results were expressed in terms of mmol Trolox equivalent per g of dried sample (mmol eq. Trolox/g).

The results are reported in Table 3. The nanoparticles exhibited the equivalent of about 11.8 mmol Trolox per gram of dried sample, compared to about 9.6 mmol for the normal guava particles.

It is to be understood that the synthesis of guava seed (Psidium guajava) nanoparticles and their use as an antibacterial agent is not limited to the specific embodiments described above, but encompasses any and all embodiments within the scope of the generic language of the following claims enabled by the embodiments described herein, or otherwise shown in the drawings or described above in terms sufficient to enable one of ordinary skill in the art to make and use the claimed subject matter.

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge