Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Endocrinology 2002-Dec

Androgen physiology: unsolved problems at the millennium.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Jean D Wilson
Michael W Leihy
Geoffrey Shaw
Marilyn B Renfree

キーワード

概要

Androgen physiology differs from that of other steroid hormones in two major regards. First, testosterone, the predominant circulating testicular androgen, is both an active hormone and a prohormone for the formation of a more active androgen, the 5alpha-reduced steroid dihydrotestosterone. Genetic evidence indicates that testosterone and dihydrotestosterone work via a common intracellular receptor, and studies involving in vitro reporter gene assays and intact mice in which both steroid 5alpha-reductase isoenzymes have been disrupted by homologous recombination indicate that dihydrotestosterone acts during embryonic life to amplify hormonal signals that can be mediated by testosterone at higher concentrations. However, in post-embryonic life dihydrotestosterone plays unique roles that have not been elucidated. Studies of other 5alpha-reduced steroids, including the plant hormone brassinolide, the hog pheromones androstanol and androstenol, and 5alpha-dihydroprogesterone (in horses and elephants) indicate that this reaction serves different functions in different systems. Second, during embryonic life androgen causes the formation of the male urogenital tract and hence is responsible for development of the tissues that serve as the major sites of androgen action in postnatal life. It has been generally assumed that androgens virilize the male fetus by the same mechanisms as in the adult, namely by the conversion of circulating testosterone to dihydrotestosterone in target tissues. However, in marsupial mammals there is no sexual dimorphism in the levels of testosterone or dihydrotestosterone at the time the male phenotype forms, and in the pouch young of one marsupial, the tammar wallaby, the testes secrete another 5alpha-reduced steroid, 5alpha-androstane-3alpha, 17beta-diol (5alpha-adiol), into plasma. The administration of 5alpha-adiol to female pouch young causes profound virilization of the urogenital sinus and external genitalia, but within target tissues 5alpha-adiol appears to work after oxidation to dihydrotestosterone. Thus, two separate mechanisms evolved for the formation of dihydrotestosterone in target tissues. 5alpha-adiol is the predominant androgen in neonatal testes in several placental mammals, but it is unclear whether it plays a similar role in other mammalian species.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge