Biomedical analysis of New Psychoactive Substances (NPS) of natural origin.
キーワード
概要
New psychoactive substances (NPS) can be divided into two main groups: synthetic molecules and active principles of natural origin. With respect to this latter group, a wide range of alkaloids contained in plants, mainly from Asia and South America, can be included in the class of NPS of natural origin. The majority NPS of natural origin presents stimulant and/or hallucinogenic effects (e.g. Catha edulis and Ayahuasca, respectively) while few of them show sedative and relaxing properties (e.g. kratom). Few information is available in relation to the analytical identification of psychoactive principles contained in the plant material. Moreover, to our knowledge, scarce data are present in literature, about the characterization and quantification of the parent drug in biological matrices from intoxication and fatality cases. In addition, the metabolism of natural active principles has not been yet fully investigated for most of the psychoactive substances from plant material. Consequently, their identification is not frequently performed and produced metabolites are often unknown. To fill this gap, we reviewed the currently available analytical methodologies for the identification and quantification of NPS of natural origin in plant material and, whenever possible, in conventional and non-conventional biological matrices of intoxicated and dead subjects. The psychoactive principles contained in the following plants were investigated: Areca catechu, Argyreia nervosa, Ayahuasca, Catha edulis, Ipomoea violacea, Mandragora officinarum, Mitragyna speciosa, Pausinystalia yohimbe, Piper methisticum, Psilocybe, Rivea corymbosa, Salvia divinorum, Sceletium tortuosum, Lactuca virosa. From the results obtained, it can be evidenced that although several analytical methods for the simultaneous quantification of different molecules from the same plants have been developed and validated, a comprehensive method to detect active compounds from different natural specimens both in biological and non-biological matrices is still lacking.