Erythroidine alkaloids: a novel class of phytoestrogens.
キーワード
概要
Erythrina poeppigiana is a medicinal plant which is widely used in Asia, Latin America, and Africa in traditional remedies for gynecological complications and maladies. In continuation of studies for the discovery of novel phytoestrogens, four erythroidine alkaloids, namely α-erythroidine, β-erythroidine, and their oxo-derivatives 8-oxo-α-erythroidine and 8-oxo-β-erythroidine, were isolated and structurally characterized from the methanolic extract of the stem bark of E. poeppigiana. Due to the high amounts of erythroidines in the extract and considering the widespread utilization of Erythrina preparations in traditional medicine, the exploration of their estrogenic properties was performed. The estrogenicity of the isolated erythroidines was assayed in various estrogen receptor-(ER)-dependent test systems, including receptor binding affinity, cell culture based ER-dependent reporter gene assays, and gene expression studies in cultured cells using reverse transcription polymerase chain reaction techniques. α-Erythroidine and β-erythroidine showed binding affinity values for ERα of 0.015 ± 0.010% and 0.005 ± 0.010%, respectively, whereas only β-erythroidine bound to ERβ (0.006 ± 0.010%). In reporter gene assays, both erythroidines exhibited a significant dose-dependent estrogenic stimulation of ER-dependent reporter gene activity in osteosarcoma cells detectable already at 10 nM. Results were confirmed in the MVLN cells, a bioluminescent variant of MCF-7 breast cancer cells. Further, α-erythroidine and β-erythroidine both induced the enhanced expression of the specific ERα-dependent genes trefoil factor-1 and serum/glucocorticoid regulated kinase 3 in MCF-7 cells, confirming estrogenicity. Additionally, using molecular docking simulations, a potential mode of binding on ERα, is proposed, supporting the experimental evidences. This is the first time that an estrogenic profile is reported for erythroidine alkaloids, potentially a new class of phytoestrogens.