Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European journal of biochemistry 1997-Aug

Mutational analysis of domain II of flavonol 3-sulfotransferase.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
F Marsolais
L Varin

キーワード

概要

The flavonol 3- and 4'-sulfotransferases (ST) from Flaveria chloraefolia catalyze the transfer of the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate (PAdoPS) to position 3 of flavonol aglycones and position 4' of flavonol 3-sulfates. We identified previously a protein segment, designated domain II, that contains all the determinants responsible for the specificity of these enzymes. Within domain II, at least five amino acids specific to the 4'-ST that could bind the sulfate group of quercetin 3-sulfate were identified. In this study, these amino acid residues were introduced at equivalent positions in the flavonol 3-ST sequence by site-directed mutagenesis of the cloned cDNA. No reversal of the substrate specificity was observed after the individual mutations. However, mutation of Leu95 to Tyr had different effects on the kinetic constants depending on the substitution pattern of the flavonoid B ring, suggesting that the tyrosine side chain may be in direct contact with this part of the molecule. The function of conserved amino acids present in domain II was also investigated. Unconservative mutations at Lys134, Tyr137 and Tyr150 resulted in protein instability in solution, suggesting that these residues might be important for the structural stability of the enzyme. Replacement of Arg140 with Lys or Ser had no effect on protein stability, but resulted in a strong reduction in specific activity. The results of photoaffinity-labeling experiments with PAdoP[35S]S suggest that this residue is required to bind the cosubstrate. In addition, the reduced affinity of [Ser140]ST for 3'-phosphoadenosine 5'-phosphate (PAdoP)-agarose indicates that Arg140 is also involved in binding the coproduct. Replacement of His118 with Glu or Ala resulted in a strong reduction in catalytic activity. However, [Lys118]ST retained a significant amount of catalytic activity. The results of photoaffinity-labeling experiments with PAdoP[35S]S and affinity chromatography on PAdoP-agarose suggest that His118 might be involved in catalysis in the flavonol 3-ST.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge