Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Clinical Investigation 1999-May

Occurrence of sialic acids in healthy humans and different disorders.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
P Sillanaukee
M Pönniö
I P Jääskeläinen

キーワード

概要

Sialic acid (SA), N-acetylated derivatives of neuraminic acid, play a central role in the biomedical functioning of humans. The normal range of total sialic acid (TSA) level in serum/plasma is 1.58-2.22 mmol L-1, the free form of SA only constituting 0.5-3 mumol L-1 and the lipid-associated (LSA) forms 10-50 mumol L-1. Notably, considerably higher amounts of free SA are found in urine than in serum/plasma (approximately 50% of the total SA). In inherited SA storage diseases such as Salla's disease, SA levels are elevated many times over, and their determination during clinical investigation is well established. Furthermore, a number of reports describe elevated SA levels in various other diseases, tentatively suggesting broader clinical utility for SA markers. Increased SA concentrations have been reported during inflammatory processes, probably resulting from increased levels of richly sialylated acute-phase glycoproteins. A connection between increased SA levels and elevated stroke and cardiovascular mortality risk has also been reported. In addition, SA levels are slightly increased in cancer, positively correlating with the degree of metastasis, as well as in alcohol abuse, diabetes, chronic renal failure and chronic glomerulonephritis. Several different mechanisms are assumed to underlie the elevated SA concentrations in these disorders. The apparent non-specificity of SA to a given disease limits the potential clinical usefulness of SA determination. In addition, some non-pathological factors, such as aging, pregnancy and smoking, may cause changes in SA concentrations. The absolute increases in SA levels are also rather small (save those in inherited SA storage disorders); this further limits the clinical potential of SA as a marker. Tentatively, SA markers might serve as adjuncts, when combined with other markers, in disease screening, disease progression follow-up, and in the monitoring of treatment response. To become clinically useful, however, the existing SA determination assays need to be considerably refined to reduce interferences, to be specific for certain SA forms, and to be more easy to use.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge