Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2012-Jun

Pharmacologic properties of polyethylene glycol-modified Bacillus thiaminolyticus thiaminase I enzyme.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Shuqian Liu
Younsoo Bae
Markos Leggas
Abigail Daily
Saloni Bhatnagar
Sumitra Miriyala
Daret K St Clair
Jeffrey A Moscow

キーワード

概要

We have previously shown that the bacterial enzyme thiaminase 1 has antitumor activity. In an attempt to make thiaminase I a more effective pharmaceutical agent, we have modified it by adding polyethylene glycol (PEG) chains of various lengths. We were surprised to find that 5k-PEGylation eliminated thiaminase cytotoxic activity in all cell lines tested. Both native thiaminase and 5k-PEGylated thiaminase efficiently depleted thiamine from cell culture medium, and both could use intracellular phosphorylated thiamine as substrates. However, native enzyme more effectively depleted thiamine and thiamine diphosphate in RS4 leukemia cell cytosol, and native thiaminase depressed cellular respiration, whereas PEGylated thiaminase did not. Despite the lack of in vitro cytotoxicity, PEGylation markedly increased the in vivo toxicity of the enzyme. Pharmacokinetic studies revealed that the half-life of native thiaminase was 1.5 h compared with 34.4 h for the 5k-PEGylated enzyme. Serum thiamine levels were depleted by both native and 5k-PEGylated enzyme. Despite superior pharmacokinetics, 5k-PEGylated thiaminase showed no antitumor effect against an RS4 leukemia xenograft, in contrast to native thiaminase, which showed antitumor activity. PEGylation of thiaminase I has demonstrated that depression of mitochondrial function contributes, at least in part, to its anticancer activity. PEGylation also enhances plasma retention time, which increased its vivo toxicity and decreased its activity against a leukemia xenograft, the opposite of the desired effects. These studies suggest that the mechanism of anticancer cytotoxicity of thiaminase requires acute depression of cellular respiration, whereas systemic toxicity is related to the duration of extracellular thiamine depletion.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge