Japanese
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomaterials 2003-Mar

Preparation and characterization of biodegradable PLA polymeric blends.

登録ユーザーのみが記事を翻訳できます
ログインサインアップ
リンクがクリップボードに保存されます
Chien Chung Chen
Ju Yu Chueh
How Tseng
Haw Ming Huang
Sheng Yang Lee

キーワード

概要

The purpose of this study was to fine-tune the mechanical properties of high molecular-weight poly-L-lactic acid (PLLA), especially to increase its toughness without sacrificing too much of its original strength. Besides of its long degradation time, PLLA is usually hard and brittle, which hinders its usage in medical applications, i.e., orthopedic and dental surgery. Some modifications, such as the addition of plasticizers or surfactants/compatibilizers, are usually required to improve its original properties. PDLLA can degrade quickly due to its amorphous structure, thus shortening the degradation time of PLLA/PDLLA blends. Blends of biodegradable poly-L-lactic acid (PLLA) and poly-DL-lactic acid (PDLLA) or polycaprolactone (PCL), in addition to a third component, the surfactant-a copolymer of ethylene oxide and propylene oxide, were prepared by blending these three polymers at various ratios using dichloromethane as a solvent. The weight percentages of PLLA/PDLLA (or PCL) blends were 100%/0%, 80%/20%, 60%/40%, 50%/50%, 40%/60%, 20%/80% and 0%/100%, respectively. Physical properties such as the crystalline melting point, glass transition point (T(g)), phase behavior, degradation behavior, and other mechanical properties were characterized by thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, gel permeation chromatography, and dynamic mechanical analysis (DMA). DSC data indicate that PLLA/PDLLA blends without the surfactant had two T(g)'s. With the addition of the surfactant, there was a linear shift of the single T(g) as a function of composition, with lower percentages of PLLA producing lower glass transition temperatures indicating that better miscibility had been achieved. DMA data show that the 40/60 PLLA/PDLLA blends without the surfactant had high elastic modulus and elongation, and similar results were observed after adding 2% surfactant into the blends. The 50/50 PLLA/PDLLA/2% surfactant blend had the highest elastic modulus, yield strength, and break strength compared with other ratios of PLLA/PDLLA/2% surfactant blends. The elongation at break of 50/50 PLLA/PDLLA was similar to that of PLLA. Again, the elongation at break of 50/50 PLLA/PDLLA/2% surfactant was almost 1.2-1.9 times higher than that of 50/50 PLLA/PDLLA and PLLA. Elongation of PLLA increased with the addition of PCL, but the strength decreased at the same time. In conclusions, adding PDLLA and surfactant to PLLA via solution-blending may be an effective way to make PLLA tougher and more suitable to use in orthopedic or dental applications.

Facebookページに参加する

科学に裏打ちされた最も完全な薬草データベース

  • 55の言語で動作します
  • 科学に裏打ちされたハーブ療法
  • 画像によるハーブの認識
  • インタラクティブGPSマップ-場所にハーブをタグ付け(近日公開)
  • 検索に関連する科学出版物を読む
  • それらの効果によって薬草を検索する
  • あなたの興味を整理し、ニュース研究、臨床試験、特許について最新情報を入手してください

症状や病気を入力し、役立つ可能性のあるハーブについて読み、ハーブを入力して、それが使用されている病気や症状を確認します。
*すべての情報は公開された科学的研究に基づいています

Google Play badgeApp Store badge